ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:180KB ,
资源ID:7687750      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7687750.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初中数学竞赛讲座(第3讲)求代数式的值.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学竞赛讲座(第3讲)求代数式的值.doc

1、第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值下面结合例题初步看一看代数式求值的常用技巧 例1 求下列代数式的值:分析 上面两题均可直接代入求值,但会很麻烦,容易出错我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性=0-4a3b2-a2b-5=-413(- 2)2- 12(-2)-5=-16+2-5=-19(2)原式=3x2y-xyz+(2xyz-x2

2、z)+4x2?3x2y-(xyz-5x2z) =3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z) =(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z) =2xyz-2x2z =2(-1)2(-3)-2(-1)2(-3) =12+6=18说明 本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值去、添括号时,一定要注意各项符号的变化例2 已知a-b=-1,求a3+3ab-b3的值分析 由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值

3、求代数式的值下面给出本题的五种解法解法1 由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3 =b3-3b2+3b-1+3b2-3b-b3 =-1说明 这是用代入消元法消去a化简求值的解法2 因为a-b=-1,所以 原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1说明 这种解法是利用了乘法公式,将原式化简求值的解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3

4、=a3-3a2b+3ab2-b3=(a-b)3 =(-1)3=-1说明 这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1说明 这种解法是由a-b=-1,演绎推理出所求代数式的值解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3

5、ab=-1说明 这种解法是添项,凑出(a-b)3,然后化简求值通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3 ;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)解 由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简所以解 因为a=3b,所以c=5a=5(3b)=15b将a,c代入所求代数式,化

6、简得解 因为(x-5)2,m都是非负数,所以由(1)有由(2)得y+1=3,所以y=2下面先化简所求代数式,然后再代入求值=x2y+5m2x+10xy2=522+0+10522=250例6 如果4a-3b=7,并且3a+2b=19,求14a-2b的值分析 此题可以用方程组求出a,b的值,再分别代入14a-2b求值下面介绍一种不必求出a,b的值的解法解 14a-2b=2(7a-b) =2(4a+3a)+(-3b+2b)=2(4a-3b)+(3a+2b)=2(7+19)=52x+x-1+x-2+x-3+x-4+x-5的值 分析 所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉

7、绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5) =-1-2+3+4+5=9说明 实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关例8 若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利x=3k,y=4k,z=7k因为2x-y+z=18,所以23k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16

8、-14=8例9 已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值 分析 本题是可直接代入求值的下面采用换元法,先将式子改写得较简洁,然后再求值解 设x+y=m,xy=n原式=(n-1)2+(m-2)(m-2n) =(n-1)2+m2-2m-2mn+4n =n2-2n+1+4n-2m-2mn+m2 =(n+1)2-2m(n+1)+m2 =(n+1-m)2 =(1111+1-22)2 =(121+1-22)2 =1002=10000说明 换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式练习三1求下列代数式的值: (1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值 3已知a=3.5,b=-0.8,求代数式6-5b-3a-2b-8b-1的值 4已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值5已知

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服