ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:344.50KB ,
资源ID:7683065      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7683065.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(单元测试卷第13单元直线与圆锥曲线的位置关系20081023_3934013_0.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

单元测试卷第13单元直线与圆锥曲线的位置关系20081023_3934013_0.doc

1、考网| 精品资料共享 你的分享,大家共享第十三单元 直线与圆锥曲线的位置关系一.选择题(1) 椭圆上的点到直线的最大距离是 ( ) A 3 B C D(2) 过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线 ( )A 有且仅有一条 B 有且仅有两条 C有无穷多条 D不存在(3) 设双曲线 (0a0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别为p、q,则等于 ( )A2a B C D(9) 已知双曲线的焦点为F1、F2,点M在双曲线上且MF1x轴,则F1到直线F2M的距离为 ( )A B C D(10) 点P(-3,1)在椭圆的左准线上,

2、过点P且方向为的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A B C D二.填空题(11) 椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为 _.(12) 若直线l过抛物线(a0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a=_(13) 过点且被点M平分的双曲线的弦所在直线方程为 .(14) 已知F1、F2是椭圆+y2=1的两个焦点, P是该椭圆上的一个动点, 则|PF1|PF2|的最大值是 . 三.解答题(15) 如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2, y2)两点(1)

3、写出直线的方程;(2)求x1x2与y1y2的值;(3)求证:OMON(16) 已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设.()证明:1e2;()若,PF1F2的周长为6;写出椭圆C的方程. (17) 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程; (2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.(18) 如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,|MA1|

4、A1F1|21 ()求椭圆的方程; ()若点P为l上的动点,求F1PF2最大值参考答案一选择题: 1.D 解析:设椭圆上的点P(4cos,2sin)则点P到直线的距离d=2.B 解析:过抛物线的焦点作一条直线与抛物线相交于A、B两点,若直线AB的斜率不存在,则横坐标之和等于2,不适合。故设直线AB的斜率为k,则直线AB为代入抛物线得,A、B两点的横坐标之和等于5,则这样的直线有且仅有两条3.A 解析:直线l过(a, 0), (0, b)两点. 即为:,故原点到直线l的距离=c, e = 或2,又0a0)的焦点F作一直线交抛物线于P、Q两点,设P(x1,y1)、Q(x2,y2),则p=设直线PQ

5、为,联立直线方程与抛物线方程可得=,=49.C 解析:已知双曲线的焦点为F1、F2,点M在双曲线上且MF1x轴,M(3,则MF1=,故MF2=,故F1到直线F2M的距离为10.A解析: 点P(-3,1)在椭圆的左准线上, 故 点P(-3,1)关于直线的对称的点为Q,则Q(-3,-5),设椭圆的左焦点为F,则直线FQ为,故 1,二填空题: 11. 20 解析:PQF2的周长=4 12. 解析:l被抛物线截得的线段长 即为通径长 ,故 =4, 13. 解析: 参考选择题(4),由点差法 可得斜率为 14. 4 . 解析:由焦半径公式|PF1|=,|PF2|=|PF1|PF2|=()()=则|PF1

6、|PF2|的最大值是=4.三解答题(15)解()解:直线l的方程为 ()解:由及y2=2x消去y可得 点M,N的横坐标x1与 x2是的两个根,由韦达定理得()证明:设OM,ON的斜率分别为k1, k2, (16) ()证法一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是. 所以点M的坐标是(). 由即 证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是所以 因为点M在椭圆上,所以 即 解得 ()当时,所以 由MF1F2的周长为6,得 所以 椭圆方程为(17) 解:()设双曲线方程为 由已知得故双曲线C的方程为()将 由直线l与双曲线交于不同的两点得即 设,则而于是 由、得 故k的取值范围为(18)解 ()设椭圆方程为,半焦距为,则()12

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服