ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:952.50KB ,
资源ID:7680608      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7680608.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(MBA决策分析教材--第十章多属性决策问题.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

MBA决策分析教材--第十章多属性决策问题.doc

1、第十章 多属性决策问题(Multi-attribute Decision-making Problem) 即: 有限方案多目标决策问题 主要参考文献: 68, 112, 152 §10.1概述 MA MC MO 一、决策矩阵(属性矩阵、属性值表) 方案集 X = {} 方案 的属性向量 = {,…,} 当目标函数为 时, = () 各方的属性值可列成表(或称为决策矩阵): … … … … … … … … …

2、 … … … … … … … … … … … 例: 学校扩建 学校序号 费用(万元) 平均就读距离km 1 60 1.0 2 50 0.8 3 44 1.2 4 36 2.0 5 44 1.5 6 30 2.4 例: 表10.1 研究生院试评估的部分原始数据 j i 人均专著 (本/人) 生师比 科研经费 (万元/年) 逾期毕业率 (%) 1 0.1 5 5000 4.7 2 0.2 7 400

3、0 2.2 3 0.6 10 1260 3.0 4 0.3 4 3000 3.9 5 2.8 2 284 1.2 二、数据预处理 数据的预处理(又称规范化)主要有如下三种作用。 首先,属性值有多种类型。有些指标的属性值越大越好,如科研成果数、科研经费等是效益型;有些指标的值越小越好,称作成本型。另有一些指标的属性值既非效益型又非成本型。例如研究生院的生师比,一个指导教师指导4至6名研究生既可保证教师满工作量, 也能使导师有充分的科研时间和对研究生的指导时间,生师比值过高,学生的培养质量难以保证;比值过低;教师的工作量不饱满。这几类属性放在同一表

4、中不便于直接从数值大小来判断方案的优劣,因此需要对属性表中的数据进行预处理,使表中任一属性下性能越优的值在变换后的属性表中的值越大。 其次是非量纲化。多目标评估的困难之一是指标间不可公度,即在属性值表中的每一列数具有不同的单位(量纲)。即使对同一属性,采用不同的计量单位,表中的数值也就不 同。在用各种多目标评估方法进行评价时,需要排除量纲的选用对评估结果的影响,这就是非量纲化,亦即设法消去(而不是简单删去)量纲,仅用数值的大小来反映属性值的优劣。   第三是归一化。原属性值表中不同指标的属性值的数值大小差别很大,如总经费即 使以万元为单位,其数量级往往在千()、万()间,而生均在学期间

5、发表的论文、专著的数量、生均获奖成果的数量级在个位()或小数()之间,为了直观,更为了便于 采用各种多目标评估方法进行比较,需要把属性值表中的数值归一化,即把表中数均变换到[0,1]区间上。   此外,还可在数据预处理时用非线性变换或其他办法来解决或部分解决目标间的不完全补偿性。 常用的数据预处理方法有下列几种。 (1)线性变换 效益型属性: = / (10-1) 变换后的属性值最差不为0,最佳为1 成本型属性 = 1 - / (10-2) 变换后的属性值最佳不为1,最差为0

6、 或 ’ = / (10-2’) 变换后的属性值最差不为0,最佳为1, 且是非线性变换 表10.2 表10.1经线性变换后的属性值 j i () () () () 1 0.0357 1.0000 0.0000 0.2553 2 0.0714 0.8000 0.5319 0.5455 3 0.2143 0.2520 0.3617 0.4000 4 0.1071 0.6000 0.1702 0.3077 5

7、 1.0000 0.0568 0.7447 1.0000 (2) 标准0-1变换 效益型: = (10.3) 成本型: = (10.4) 特点:每一属性,最佳值为1,最差值为0,而且变换后的差值是线性的. 表10.3 表10.1经标准0-1变换后的属性值 j i () () () 1 0.0000 1.0000 0.0000 2 0.0370 0.7880 0.7142 3 0.1852 0.2070 0.4857

8、4 0.0741 0.5759 0.2286 5 1.0000 0.0000 1.0000 (3) 最优值为给定区间时的变换 设给定的最优属性区间为 [, ] 1- ( - )/( - ’) 若< = 1 若≤≤ (10.5) 1 - (-)/ (”-) 若> 其中, ’为无法容忍下限, ”为无法容忍上限。 表10.4 表10.1之属性2的数据处理 j

9、i 生师比 1 5 1.0000 2 7 0.8333 3 10 0.3333 4 4 0.6666 5 2 0.0000 (4)向量规范化 (10.6) 特点:规范化后,各方案的同一属性值的平方和为1;无论成本型或效益型,从属性值的大小上无法分辨。常用于计算各方案与某种虚拟方案(如理想点或负理想点)的欧氏距离的场合。 表中最右一列是属性2经式(10.5)变换后的值再向量规范化的结果. 表10.5 表10.1经向量规范化后的属性值 j

10、 i () () () () 1 0.0346 0.6956 0.6482 0.6666 2 0.0693 0.5565 0.3034 0.5555 3 0.2078 0.1753 0.4137 0.2222 4 0.1039 0.4174 0.5378 0.4444 5 0.9695 0.0398 0.1655 0.0000 (5) 原始数据的统计处理 = (1.00 - M) + M (10.7) 其中, = 是各方案属性j的均值, m为

11、方案数, M的取值可在0.5-0.75之间. 式(10.7)可以有多种变形, 例如: = (10.7’) 其中 为属性j的均方差,当高端均方差大于2.5时变换后的值均为1.00.这种变换的结果与专家打分的结果比较吻合. 表10.6 表10.1之属性1用不同方法处理结果比较 j i 人均专著 (本/人) 线性变换 用10.7式 (M=0.7) 用10.7’式 1 0.1 0.0357 0.5950 0.6625 2 0.2 0.0714 0.6100 0.675

12、0 3 0.6 0.2143 0.6700 0.7250 4 0.3 0.1071 0.6250 0.6875 5 2.8 1.0000 1.0000 1.0000 三、方案筛选 1.优选法(Dominance) 淘汰劣解 2.满意值法(逻辑乘 即与门Conjunctive) 规定 j=1,2,…,n (切除值) 当 ≥ j=1且j=2且…j=n 均满足时,方案 被接受 主要缺点:目标间不能补偿,例研究生录取时教委规定的单科分数线. 3.逻辑和法(Disjunctive或门) 规定 j=1,2,…,n 若≥ j=

13、1或2或…n时方案被接受。往往作为上法的补充. 这些方法用于初始方案过的预选,不能用于方案排序 ordering —次序,优先序 也不能用于方案分等 Ranking —量化优先程度. §10.2 加权和法 一、引言 多目标决策的特点: 目标间的矛盾性, 各属性值不可公度. 这二难点不可公度虽可通过属性矩阵的规范化得到部分解决, 但前述规范化过程不能反映目标的重要性 权:目标重要性的度量, 即衡量目标重要性的手段. 权的三重含义: ① 决策人对目标的重视程度; ②各目标属性值的差异程度; ③各目标属性值的可靠程度; 权

14、应综合反映三种因素的作用. 通过权,将多目标决策问题化为单目标求解. 二、字典序法与一般加权和法 1. 字典序法 》… 时的加权和法 即某个目标特别重要, 实质上是单目标决策, 最重要目标的属性值相同时,再比较第二重要的属性, 如此继续. 2. 一般加权和法 加权和法的求解步骤很简单: ①属性表规范化,得 i=1, …, m; j=1, …, n. ②确定各指标的权系数 j=1, …, n. ③根据指标 的大小排出方案i(i=1,…, m)的优劣 加权和法,包括评分打点,由于其简单、明了(直观),是人们最经常使用的多目标评价方法。采用加权

15、和法的关键在于确定指标体系并设定各最低层指标的权系数:有了指标体系就可以设法利用统计数据或专家打分给出属性值表;有了权系数,具体的计算和排序就十分简单了。正因为此,以往的各种实际评估过程中总要把相当大的精力和时间用在确定指标体系和设定权上。 加权和法常常被人们不适当地使用,这是因为许多人并不清楚:使用加权和法意味着承认如下假设: ①指标体系为树状结构,即每个下级指标只与一个上级指标相关联; ②每个属性的边际价值是线性的(优劣与属性值大小成比例),每两个属性都是相互价值独立的; ③属性间的完全可补偿性:一个方案的某属性无论多差都可用其他属性来补偿。 事实上,这些假设往往都

16、不成立。首先,指标体系通常是网状的,即至少有一个下级指标同时与二个或二个以上的上级指标相关联,也就是说某个属性可同时反映两个上级目标达到的程度。其次,属性的边际价值的线性常常是局部的,甚至有最优值为给定区间或点的情况存在;属性间的价值独立性条件也极难满足,至少是极难验证其满足。至于属性间的可补偿性通常只是部分的、有条件的。因此,使用加权和法要十分小心。不过,对网状指标体系,可以用层次分析法中的权重设定和网状指标的权重递推法设定最低层权重(见下节)。当属性的边际价值函数为非线性时可以用适当的数学方法进行数据预处理;属性间的不完全补偿性也可通过适当处理,例如用逻辑乘法预先删除具有不可补偿属性的方案

17、等。只要认识到加权和法本身存在的种种局限性并采取相应的补救措施,则加权和法仍不失为一种简明而有效的多目标评价方法。 三、确定权的常用方法 1. 最小平方误差法 见教材第174页. 与主观慨率中的方法类似. 2. 本征向量法 / / … / / / … / Aw = … … … … … … … … / / … / = nw 即 (A - nI)

18、 w = 0 如A的估计不够准确, 则A中元素的小的摄动意味本征值的摄动,从而 Aw = w 由此可求得w . 四、层次分析法AHP 1. 由决策人利用P177之表10.2构造矩阵A; 2. 用本征向量法求 w 3.矩阵A的一致性检验: i, 一致性指标(Consistence Index) C I = ii,同阶矩阵的随机性指标(Random Index) n 3 4 5 6 7 8 9 10 RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 3.1

19、16 4.07 5.45 6.62 7.79 8.99 10.16 11.34 iii,一致性比率(Consistance Rate) CR=CI/RI CR>0.1(即大于同阶矩阵相应的)时不能通过一致性检验,应该重新估计矩阵A. CR≤0.1 通过一致性检验, 求得的w有效. 4. 方案排序 (1) . 各方案在各目标下属性值已知时, 可以根据指标 的大小排出方案i (i=1,…, m)的优劣. (2) . 各方案在各目标下属性值难以量化时, 可以通过在各目标下优劣的两两比较(仍利用表10.2)求得每个目标下各方案的权, 再计算各方案的总权重, 根据总权重的

20、大小排出方案的优劣(参见教材之182页例10.5). 五、最低层目标权重的设定 1. 网状结构 (见教材§10.5.2, 第181-182页) 有了最第层目标的权重 设: 最第层目标的规范化了的属性值为, 则可用作评价方案优劣的依据, 越大方案i越优. 2.树状结构: 当最低层目标过多,不便直接设定时,可以分组自上而下地逐步设定。 §10.3 TOPSIS法 步骤一. 用向量规法求得规范决策矩阵Z = 步骤二. 构成加权规范阵X = · 步骤三.确定理想和负理想解

21、 效益型属性 理想解 = 成本型属性 效益型属性 负理想解 = 成本型属性 步骤四.计算各方案到理想解与负理想解的距离 到理想解的距离 到负理想解的距离 步骤五.计算各方案与理想解的接近程度 = 第六步.按由大到小排列方案的优劣次序 §10.4基于相对位置的方案排对法 优点:需要的信息少,不必事先给出决策矩阵 只需给出各目标下方案间的优先序(0-1

22、矩阵或指向图) 第一步:确定各方案两两间的总体优先关系 1.设定各目标的权 j=1,2,…n 且令 2.对每一目标j,进行方案的成对比较, 给出优先关系矩阵或指向图 的第j个属性值优于的第j个属性值 记作 (f) 的第j个属性值优于的第j个属性值 记作 (p) 与的第j个属性值无差异或不可比 记作 (~) 3. 把f的各目标的权相加,记作 w(f) 把~的各目标的权相加,记作 w(~) 把p的各目标的权相加,记作 w(p) 4. 计算方案的优劣指示值 = σ值的大小反映与无差异的目标的重要性 5. 选定阀值A≥1,判定方

23、案总体优劣 >A 则f <1/A p 其它 ~ 第二步 计算排队指标值 比优的方案个数记为 比差的方案个数记为 的排队指标值:= - 第三步 按的大小排定方案的优劣次序 缺点:因无决策矩阵,不能反映优先程度 例: 100 1 1 1.01 设 =0.4 =0.6 A=1.2 σ=0 =1.5>A 所以f, 这与加权和法的结果大相径庭 ∴凡是属性值均能定量来表示的,不宜用此法

24、 §10.5 ELECTRE 法国人:B.Roy提出的 一、级别高于关系(Outranking Relation) 1.定义 给定决策人的偏好次序和属性矩阵{}当人们有理由相信x’优于x”,称x’的级别高于x”, 记作x’Sx” Notes: i, 决策人愿望承担x’x”所产生的风险; ii,理由:同基于相对位置的方案排队法 2.定义:(P193定义10.2) 给定方案集X , x’, x”∈X ,当且仅当X中存在,,…,; ,,…, ; j≥1, k ≥1, 使x’Sx” (或者x’S,S,…, S x”) 且x”Sx’(或者x”S,S,…,

25、 Sx’) 则称x”与x’级别无差异,记作x’x”。 二、级别高于关系的性质: 1. 弱传递性: x’S且()≥ (x”) Þ x’Sx” 或 ( x’)≥ () 且Sx” Þ x’Sx” 2. 自反性 XSX XX 3. 是对称的 4. 允许不可比性 三. 级别高于关系的构造 ——以决策矩阵为基础(不作规范化) 第一步:设定各属性的权w 第二步:进行和谐性检验(Concordance Test) 1. 构造指示集(属性序号分类) 不失一般性, 假设各属性值愈大愈优. (,) = {j | 1≤j≤n

26、 ()> ()} (,) = {j | 1≤j≤n, ()= ()} (,) = {j | 1≤j≤n, ()< ()} 2. 计算和谐性指数 = (+ ) = / 3.选定0.5<α≤1, 若 ≥1, ≥α,则通过和谐性检验 α愈大,级别高于的关系要求越高 第三步 进行非不和谐性检验(non-discordance test) 对各属性间的补偿加以限制 规定 j=1,…,n 若对任一 j () - ()≥ 则不承认S 第四步 确定级别高于关系 若 ≥1, ≥α 且 对所有

27、j () - ()≤ 则S 四、级别高于关系的使用 1. 通过方案成对比较确定级别高于关系后,找出最小优势子集。 定义 i, X若对每个x’∈ 存在∈ 使 S x’ 则称为最小优势子集。 ii, 各方案间不存在级别高于关系的最小优势子集称为核 2. 若足够小,决策人直接进行价值判断,择一实施;若中包含较多方案,调整α重复上述步骤. 五、ELECTRE-Ⅱ 1. 定义高、中、低三阀值 0.5<<<<1和 << 2. 定义三个不和谐集 = {(,) | - ≥ i, k=1,…,m i≠k } = {(,)| ≥- ≥

28、 i, k=1,…,m i≠k } = {(,) | - < i, k=1,…,m i≠k } 2. 定义强级别高于和弱级别高于 ≥1且 Û i. ≥ 且- < 对所有j 或者ii. ≥ 且- < 对所有j 即i,和谐性高,不和谐性中等,或者ii,和谐性中不和谐性低 ≥1且 Û i. ≥ 且- < 对所有j 或者ii. ≥ 且- < 对所有j 即和谐性与不和谐性均为中等

29、或均低. 4. 前向排序(详见p198) 根据强级别高于关系和弱级别高于关系分别构造强指向图和弱指向图. 从每个指向图中找出非劣方案,然后从图中抹去,逐步进行直到所有方案均被抹掉为止,根据各方案被抹去的次序v’()判断方案的优劣。 5.反向排序 将强、弱指向图中箭头反向,按前向排序法得反向排序的次序v”() 6.计算的平均序 =(v’+v”)/2 值小者为优 六、讨论 优点:步骤虽多,并不复杂(可以程序化) 可编程计算 (由决策人定权和 ) 缺点:对决策矩阵所提供的信息,利用不够充分 (但是比基于相对位置的方案排队法要强: 有非不和谐性检验) 10- 11

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服