1、光学11. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄 (D) 改用波长较小的单色光源 (B) 2. 在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处现将光源S向下移动到示意图中的S位置,则 (A) 中央明条纹也向下移动,且条纹间距不变 (B) 中央明条纹向上移动,且条纹间距不变 (C) 中央明条纹向下移动,且条纹间距增大 (D) 中央明条纹向上移动,且条纹间距增大 (B)3. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条
2、光路的光程改变了 (A) 2 ( n-1 ) d (B) 2nd (C) 2 ( n-1 ) d+l / 2 (D) nd (E) ( n-1 ) d (A)4. 在单缝夫琅禾费衍射实验中,波长为l的单色光垂直入射在宽度为a4 l的单缝上,对应于衍射角为30的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个 (B) 4 个 (C) 6 个 (D) 8 个 (B) 5. 对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该 (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大的光栅 (C) 将光栅向靠近屏幕的方向移动 (D) 将光
3、栅向远离屏幕的方向移动 (B) 6. 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为 (A) a=b (B) a=b (C) a=2b (D) a=3 b (B) 7. 如图所示,假设有两个同相的相干点光源S1和S2,发出波长为l的光A是它们连线的中垂线上的一点若在S1与A之间插入厚度为e、折射率为n的薄玻璃片,则两光源发出的光在A点的相位差Df_2p (n -1) e / l _若已知l500 nm,n1.5,A点恰为第四级明纹中心,则e_ 4103_nm(1 nm =10-9 m) 8.
4、用l600 nm的单色光垂直照射牛顿环装置时,从中央向外数第个(不计中央暗斑)暗环对应的空气膜厚度为_1.2 _mm(1 nm=10-9 m)9. 将波长为l的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为q,则缝的宽度等于_l / sinq _ 10. 一束自然光垂直穿过两个偏振片,两个偏振片的偏振化方向成45角已知通过此两偏振片后的光强为I,则入射至第二个偏振片的线偏振光强度为_2I _11. 两个偏振片堆叠在一起,其偏振化方向相互垂直若一束强度为I0的线偏振光入射,其光矢量振动方向与第一偏振片偏振化方向夹角为p / 4,则穿过第一偏振片后的光强为_ I0
5、 / 2_,穿过两个偏振片后的光强为_0_ 12. 某一块火石玻璃的折射率是1.65,现将这块玻璃浸没在水中(n=1.33)。欲使从这块玻璃表面反射到水中的光是完全偏振的,则光由水射向玻璃的入射角应为_ 51.1_ 13. 在双缝干涉实验中,单色光源S0到两缝S1和S2的距离分别为l1和l2,并且l1l23l,l为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D(Dd),如图求: (1) 零级明纹到屏幕中央O点的距离 (2) 相邻明条纹间的距离 解:(1) 如图,设P0为零级明纹中心 则 (l2 +r2) - (l1 +r1) = 0 r2 r1 = l1 l2 = 3l (2) 在屏上
6、距O点为x处, 光程差 明纹条件 (k1,2,.) 在此处令k0,即为(1)的结果相邻明条纹间距 14. 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm的A处是从棱边算起的第四条暗条纹中心 (1) 求此空气劈形膜的劈尖角q; (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹? (3) 在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?解:(1) 棱边处是第一条暗纹中心,在膜厚度为e2l处是第二条暗纹中心,依此可知第四条暗纹
7、中心处,即A处膜厚度 e4= 4.810-5 rad (2) 由上问可知A处膜厚为 e43500 / 2 nm750 nm 对于l600 nm的光,连同附加光程差,在A处两反射光的光程差为,它与波长之比为所以A处是明纹(3) 棱边处仍是暗纹,A处是第三条明纹,所以共有三条明纹,三条暗纹 15. 在夫琅禾费单缝衍射实验中,如果缝宽a与入射光波长l的比值分别为(1) 1,(2) 10,(3) 100,试分别计算中央明条纹边缘的衍射角再讨论计算结果说明什么问题 解:(1) a=l,sinj =l/ l=1 , j =90 (2) a=10l,sinj =l/10 l=0.1 j =54 (3) a=
8、100l,sinj =l/100 l=0.01 j =3 这说明,比值l /a变小的时候,所求的衍射角变小,中央明纹变窄(其它明纹也相应地变为更靠近中心点),衍射效应越来越不明显(l /a)0的极限情形即几何光学的情形: 光线沿直传播,无衍射效应16. 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,l1=440 nm,l2=660 nm (1 nm = 10-9 m)实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角j=60的方向上求此光栅的光栅常数d解:由光栅衍射主极大公式得 当两谱线重合时有 j1= j2 即 两谱线第二次重合即是 , k1=6, k2=4 由光栅公式可知d
9、 sin60=6l1 =3.0510-3 mm 17. 两偏振片叠在一起,其偏振化方向夹角为45由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,入射光中线偏振光的光矢量振动方向与第一个偏振片的偏振化方向间的夹角为30 (1) 若忽略偏振片对可透射分量的反射和吸收,求穿过每个偏振片后的光强与入射光强之比; (2) 若考虑每个偏振片对透射光的吸收率为10%,穿过每个偏振片后的透射光强与入射光强之比又是多少? 解:(1)理想偏振片的情形,设入射光中自然光强度为0,则总强度为20穿过1后有光强 , 得 穿过1、P2之后,光强I2I1/2 所以 (2)可透部分被每片吸收10穿过P1后光强
10、, 穿过P1、P2之后,光强为, 18. 如图安排的三种透光媒质、,其折射率分别为n11.33,n21.50,n31两个交界面相互平行一束自然光自媒质中入射 到与的交界面上,若反射光为线偏振光, (1) 求入射角i (2) 媒质、界面上的反射光是不是线偏振光?为什么? 解:(1) 据布儒斯特定律 tgi(n2 / n1)1.50 / 1.33 i48.44 (48) (2) 令介质中的折射角为r,则r 0.5pi41.56 此r在数值上等于在、界面上的入射角。若、界面上的反射光是线偏振光,则必满足布儒斯特定律 tg i0n3 / n21 / 1.5 i033.69 因为ri0,故、界面上的反射
11、光不是线偏振光19. 如图所示,A是一块有小圆孔S的金属挡板,B是一块方解石,其光轴方向在纸面内,P是一块偏振片,C是屏幕一束平行的自然光穿过小孔S后,垂直入射到方解石的端面上当以入射光线为轴,转动方解石时,在屏幕C上能看到什么现象? 答:一个光点围绕着另一个不动的光点旋转, 方解石每转过90角时,两光点的明暗交变一次,一个最亮时,另一个最暗。 光学21. 如图,S1、S2是两个相干光源,它们到P点的距离分别为r1和r2路径S1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径S2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (B) (C
12、) (D) (B)2. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄 (D) 改用波长较小的单色光源 (B)3. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好? (A) 5.010-1 mm (B) 1.010-1 mm (C) 1.010-2 mm (D) 1.010-3 mm (D) 4. ABCD为一块方解石的一个截面,AB为垂直于纸面的晶体平面与纸面的交线光轴方向在纸面内且与AB成一锐角q,如图所示一束平行的单色自然光垂直于AB端面入射在方解石内折射光分解
13、为o光和e光,o光和e光的 (A) 传播方向相同,电场强度的振动方向互相垂直 (B) 传播方向相同,电场强度的振动方向不互相垂直 (C) 传播方向不同,电场强度的振动方向互相垂直 (D) 传播方向不同,电场强度的振动方向不互相垂直 (C) 5. 折射率分别为n1和n2的两块平板玻璃构成空气劈尖,用波长为l的单色光垂直照射如果将该劈尖装置浸入折射率为n的透明液体中,且n2nn1,则劈尖厚度为e的地方两反射光的光程差的改变量是_2 ( n 1) e l /2 或者2 ( n 1) e + l /2_6. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片插入这块薄片使这条光路的光
14、程改变了_2( n 1) d_7. 平行单色光垂直入射于单缝上,观察夫琅禾费衍射若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为_4_ 个半波带若将单缝宽度缩小一半,P点处将是_第一_级_暗_纹 8. 在图示的双缝干涉实验中,若用薄玻璃片(折射率n11.4)覆盖缝S1,用同样厚度的玻璃片(但折射率n21.7)覆盖缝S2,将使原来未放玻璃时屏上的中央明条纹处O变为第五级明纹设单色光波长l480 nm(1nm=109m),求玻璃片的厚度d(可认为光线垂直穿过玻璃片)解:原来, d = r2r1= 0 覆盖玻璃后, d( r2 + n2d d)(r1 + n1dd)5l (n2n1)d5l =
15、8.010-6 m 9. 在双缝干涉实验中,波长l550 nm的单色平行光垂直入射到缝间距a210-4 m的双缝上,屏到双缝的距离D2 m求: (1) 中央明纹两侧的两条第10级明纹中心的间距; (2) 用一厚度为e6.610-5 m、折射率为n1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m) 解:(1) Dx20 Dl / a 0.11 m (2) 覆盖云玻璃后,零级明纹应满足 (n1)er1r2 设不盖玻璃片时,此点为第k级明纹,则应有 r2r1kl 所以 (n1)e = kl k(n1) e / l6.967 零级明纹移到原第7级明纹处 10.
16、 用波长l500 nm (1 nm10-9 m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈形膜上劈尖角q210-4 rad如果劈形膜内充满折射率为n1.40的液体求从劈棱数起第五个明条纹在充入液体前后移动的距离 解:设第五个明纹处膜厚为e,则有2nel / 25 l 设该处至劈棱的距离为l,则有近似关系elq, 由上两式得 2nlq9 l / 2,l9l / 4nq 充入液体前第五个明纹位置 l19 l / 4q 充入液体后第五个明纹位置 l29 l / 4nq 充入液体前后第五个明纹移动的距离 Dll1 l29 l ( 1 - 1 / n) / 4q 1.61 mm
17、空气e011. 如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙e0现用波长为l的单色光垂直照射,已知平凸透镜的曲率半径为R,求反射光形成的牛顿环的各暗环半径解:设某暗环半径为r,由图可知,根据几何关系,近似有 再根据干涉减弱条件有 式中为大于零的整数把式代入式可得 (k为整数,且k2e0 / l) 12. 在夫琅禾费单缝衍射实验中,如果缝宽a与入射光波长l的比值分别为(1) 1,(2) 10,(3) 100,试分别计算中央明条纹边缘的衍射角再讨论计算结果说明什么问题 解:(1) a=l,sinj =l/ l=1 , j =90 (2) a=10l,sinj =l/10 l=0.1 j =5
18、4 (3) a=100l,sinj =l/100 l=0.01 j =3 这说明,比值l /a变小的时候,所求的衍射角变小,中央明纹变窄(其它明纹也相应地变为更靠近中心点),衍射效应越来越不明显 (l /a)0的极限情形即几何光学的情形: 光线沿直传播,无衍射效应13. 用氦氖激光器发射的单色光(波长为l=632.8 nm)垂直照射到单缝上,所得夫琅禾费衍射图样中第一级暗条纹的衍射角为5,求缝宽度(1nm=10-9m) 解: a sinj = kl , k=1 a = l / sinj =7.2610-3 mm 14. 单缝的宽度a =0.10 mm,在缝后放一焦距为50 cm的会聚透镜,用平
19、行绿光(l=546 nm)垂直照射到单缝上,试求位于透镜焦平面处的屏幕上中央明条纹宽度(1nm=10-9m)解:中央明纹宽度 Dx2fl / a =25.4610-4500 / 0.10mm =5.46 mm 15. 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,l1=440 nm,l2=660 nm (1 nm = 10-9 m)实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角j=60的方向上求此光栅的光栅常数d解:由光栅衍射主极大公式得 当两谱线重合时有 j1= j2 即 两谱线第二次重合即是 , k1=6, k2=4 由光栅公式可知d sin60=6l1 =3.0510
20、-3 mm 16. 波长l=600nm(1nm=109m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30,且第三级是缺级 (1) 光栅常数(a + b)等于多少? (2) 透光缝可能的最小宽度a等于多少? (3) 在选定了上述(a + b)和a之后,求在衍射角-j 范围内可能观察到的全部主极大的级次解:(1) 由光栅衍射主极大公式得 a + b =2.410-4 cm (2) 若第三级不缺级,则由光栅公式得 由于第三级缺级,则对应于最小可能的a,j方向应是单缝衍射第一级暗纹:两式比较,得 a = (a + b)/3=0.810-4 cm (3) ,(主极大) ,(单缝衍射极小) (
21、k=1,2,3,.) 因此 k=3,6,9,.缺级 又因为kmax=(ab) / l=4, 所以实际呈现k=0,1,2级明纹(k=4在p / 2处看不到) 17. 用钠光(l=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60 (1) 若换用另一光源测得其第二级光谱的衍射角为30,求后一光源发光的波长 (2) 若以白光(400 nm760 nm) 照射在该光栅上,求其第二级光谱的张角(1 nm= 10-9 m) 解:(1) (a + b) sinj = 3l a + b =3l / sinj , j=60 a + b =2l/sin =30 3l / sinj =2l/sin
22、l=510.3 nm (2) (a + b) =3l / sinj =2041.4 nm =sin-1(2400 / 2041.4) (l=400nm) =sin-1(2760 / 2041.4) (l=760nm) 白光第二级光谱的张角 Dj = = 25 18. 两个偏振片P1、P2叠在一起,其偏振化方向之间的夹角记为a由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上线偏振光的光矢量振动方向与P1偏振化方向之间的夹角记为q (1) 若不计偏振片对可透射分量的反射和吸收且a30, q60,求穿过P1后的透射光强与入射光强之比;再求连续穿过P1、P2后的透射光强与入射光强之比. (
23、2) 若每个偏振片使可透射分量的强度减弱10,并且要使穿过P1后的透射光强及连续穿过P1、P2后的透射光强与入射光强之比都和(1)中算出的相同这时q 和a 各应是多大? 解:设I为自然光强;I1、I2分别为穿过P1和连续穿过P1、P2后的透射光强度由题意知入射光强为2I (1) 3 / 8 9 / 32 (2) cos2q0.333 q54.7 所以 cos2a0.833 , a24.1 或 ,cos2a = 0.833, a = 24.1 20. 两块偏振片叠在一起,其偏振化方向成30由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上已知两种成分的入射光透射后强度相等 (1) 若不
24、计偏振片对可透射分量的反射和吸收,求入射光中线偏振光的光矢量振动方向与第一个偏振片偏振化方向之间的夹角; (2) 仍如上一问,求透射光与入射光的强度之比; (3) 若每个偏振片对透射光的吸收率为5%,再求透射光与入射光的强度之比解: 设I为自然光强(入射光强为2I0);q为入射光中线偏振光的光矢量振动方向与第一个偏振片偏振化方向间的夹角 (1) 据题意 0.5Icos230Icos2qcos230 cos2q 1 / 2 q45 (2) 总的透射光强为2I cos230 所以透射光与入射光的强度之比为cos2303 / 8 (3) 此时透射光强为 (Icos230)(15%)2 所以透射光与入
25、射光的强度之比为 (cos230)(15%)20.338 21. 一束自然光由空气入射到某种不透明介质的表面上今测得此不透明介质的起偏角为56,求这种介质的折射率若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角解:设此不透明介质的折射率为n,空气的折射率为1由布儒斯特定律可得 ntg 561.483 将此介质片放入水中后,由布儒斯特定律 tg i0n / 1.331.112 i048.03 (48) 此i0即为所求之起偏角光学3 如图,S1、S2是两个相干光源,它们到P点的距离分别为r1和r2路径S1P垂直穿过一块厚度为t1,折射率为n1的介质板
26、,路径S2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (B) (C) (D) (B) 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D d),所用单色光在真空中的波长为l,则屏上干涉条纹中相邻的明纹之间的距离是 (A) lD / (nd) (B) nlD/d (C) ld / (nD) (D) lD / (2nd) (A) 在双缝干涉实验中,两条缝的宽度原来是相等的若其中一缝的宽度略变窄(缝中心位置不变),则 (A) 干涉条纹的间距变宽 (B) 干涉条纹的间距变窄 (C) 干涉条纹的间距不变,但原极小处的强
27、度不再为零 (D) 不再发生干涉现象 (C) 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 (A) 中心暗斑变成亮斑 (B) 变疏 (C) 变密 (D) 间距不变 (C) 在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长l,则薄膜的厚度是 (A) l / 2 (B) l / (2n) (C) l / n (D) (D) 在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大 (B) 间距变小 (C) 不发生变化 (D) 间距不变,但明暗条纹的位置交替变化
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100