ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:658.50KB ,
资源ID:7667497      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7667497.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(新课标人教版八年级上册数学13章教案.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新课标人教版八年级上册数学13章教案.doc

1、§13.1平方根 教学目标:了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根 重点:了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根 难点:对大小的估算及如何理解是非负数以及被开方数是非负数;正确区分算术平方根与平方根 第1课时 ㈠创设情景,导入新课 请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是? 这个问题实际上是已知一个正数的平方

2、求这个正数的问题(引入新课) ㈡合作交流,解读探究 讨论:1、什么样的运算是平方运算? 2、你还记得1~20之间整数的平方吗? 自主探索:让学生独立看书,自学教材 总结:一般地,如果一个正数的平方为,即,那么正数叫做的算术平方根,记为,读作根号,其中叫做被开方数 另外:0的算术平方根是0 探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形 把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。 设大正方形的边长为,则 由算术平方根的意义, 即大正方形的边长为 讨论:有多大呢? 思考:你能举些象这样的无限

3、不循环小数吗? ㈢应用迁移,巩固提高 例1 求下列各数的算术平方根 ⑴100 ⑵ ⑶0.0001 ⑷0 ⑸ 点拨:由一个数的算术平方根的定义出发来解决问题 思考:-4有算术平方根吗? 备选例题:要使代数式有意义,则的取值范围是( ) A. B. C. D. ㈣总结反思,拓展升华 小结:1、算术平方根的定义和性质 2、用计算器求一个正数的算术平方根 拓展:已知的算术平方根是3,的算术平方根是4,是的整数部分,求的算术平方根 ㈤课堂跟踪反馈 1、 非负数的算术平方

4、根表示为___,225的算术平方根是____,0的算术平方根是____ 2、 3、 的算术平方根是_____, 的算术平方根____ 4、 若是49的算术平方根,则=( ) A. 7 B. -7 C. 49 D.-49 5、 若,则的算术平方根是( ) A. 49 B. 53 C.7 D . 6、 若,求的值。 7、 若是的整数部分,是的小数部分,试确定、的值。 8、 一个自然数的算术平方根为,那么与这个自然数相邻的下一个自然数的算术平方根是_______

5、 第2课时 ㈠创设情景,导入新课 复习提问:1、什么数的平方是49? 2、平方得81的数有几个?分别是什么? 3、一对互为相反数的平方有什么关系? 交流总结:由问题出发,认识到平方得一个正数的数有2个,并且互为相反数(引入新课) ㈡合作交流,解读探究 自主探索:独立看书,自学教材 想一想:到底什么是平方根,它和我们已经认识的算术平方根有何关系? ⑴什么叫一个数的平方根?如何用符号表示? ⑵根据平方根的定义,只有什么数才有平方根? ⑶什么叫开方? [⑴如果一个数的平方等于,那么这个数叫做的平方

6、根或二次方根,用符号表示为:若;⑵只有非负数才有平方根;⑶求一个数的平方根的运算叫做开平方运算。] 练一练:求下列数的平方根 ⑴100 ⑵ ⑶0.25 ⑷ ⑸ 0 总结归纳: 1、 正数有两个平方根,它们互为相反数 2、 0的平方根是0 3、 负数没有平方根 讨论:平方根与算术平方根之间有什么关系? 总结:1、平方根与算术平方根之间的区别 ⑴定义不同:如果,那么叫做的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,是0本身;负数没有平方根。 如果,并且,那么叫做的算术平方根。一个正数的算术平方根只有一个,非负数的算术平方

7、根一定是非负数 ⑵表示方法不同:正数的平方根表示为;正数的算术平方根为 ⑶平方根等于本身的数是0;算术平方根等于本身的数是0或1 2、平方根与算术平方根之间的联系 ⑴二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个 ⑵存在条件相同,非负数才有平方根和算术平方根 ⑶0的平方根和0的算术平方根都是0 ㈢应用迁移,巩固提高 例1 说出下列各数的平方根 ⑴0.04 ⑵ ⑶ ⑷ 例2 说出下列各数的平方根各是什么? ⑴64 ⑵0 ⑶ ⑷ ⑸ ⑹ 点评:要从根本之处理解一个数的平方根

8、的运算,从平方根的概念入手,同时要知道,只有非负数才有平方根 例3 计算 ⑴ ⑵ ⑶ ⑷ ㈣总结反思,拓展升华 小结 1、平方根的定义及符号表示 2、平方根与算术平方根的关系 拓展 已知,求:的平方根 ㈤课堂跟踪反馈 1、 判断下列说法是否正确 ⑴5是25的算术平方根 ( ) ⑵是的一个平方根 ( ) ⑶的平方根是-4 ( ) ⑷ 0的平方根与算术平方根都是0 ( ) 2、⑴⑵⑶⑷ 3、若,则,的平方根是 4、的平方根是( ) A. B.

9、C. D. 5、给出下列各数: ,其中有平方根的数共有( ) A. 3个 B. 4个 C. 5个 D. 6个 6、若一个数的平方根等于它本身,数的算术平方根也等于它本身,试求的平方根。 7、求下列各数中的值 ⑴ ⑵ ⑶ ⑷ 9、 若,求、的值 10、如果一个正数的两个平方根为和,请你求出这个正数 §13.2 立方根 教学目标:了解立方根的概念,会用符号表示一个数的立方根 重点:了解立方根的概念,用立方运算求某些数的立方根;,会用计算器求某些数的立方根 难点:明确平方根与立方根的区别

10、能熟练地求某些数的立方根 ㈠创设情景,导入新课 出示一个正方体纸盒,提出问题,如果这个正方体的体积为216 ,那么它每条棱长是多少? ㈡合作交流,解读探究 观察 由以上问题,有,即要求一个数,使它的立方等于216,通过分析,有,那么6就是这个正方体的棱长 归纳 如果一个数的立方等于,这个数叫做的立方根(也叫做三次方根),即如果,那么叫做的立方根 探究 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点? 因为,所以8的立方根是( 2 ) 因为,所以0.125的立方根是( ) 因为,所以8的立方根是( 0 ) 因为,所以8的立方

11、根是( ) 一个正数有一个正的立方根 0有一个立方根,是它本身 一个负数有一个负的立方根 任何数都有唯一的立方根 因为,所以8的立方根是( ) 【总结归纳】 【类比思考】 平方根的表示我们已经很清楚了,那么立方根又该如何表示呢? 【探究说明】 一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。例如:表示27的立方根,;表示的立方根, 【探究】因为所以 = 因为,所以 = 总结 利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验

12、其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。 操作 用计算器求数的立方根的步骤及方法: 用计算器求立方根和求平方根的步骤相同,只是根指数不同。 步骤:输入 → 被开方数 → = → 根据显示写出立方根 例:求-5的立方根(保留三个有效数字) → 被开方数 → = → 1.709975947 所以 ㈢应用迁移,巩固提高 例1 求下列各数的立方根 ⑴ -8 ⑵ ⑶ ⑷ ⑸ ⑹ 例2 计算 ⑴ ⑵ ⑶ ⑷ ⑸ 例3 张叔叔有棱长为的两个正方体纸箱中

13、装满了大米,他将这两箱大米都倒入了另一个新的正方体木箱中,结果正好装满,那么这个新的正方体木箱的棱长大约是多少?(结果精确到) 分析 从一个实际问题中抽象出数学关系,即一个正方体的体积等于另一个正方体体积的2倍,列式并计算。 例4 解方程 ⑴ ⑵ 分析 我们已经学习了立方根,也能由立方根的定义求解(为常数)这一类型简单的三次方程。第⑵小题,我们要把看成一个整体,依然转化成为的形式,再由立方根定义去求解。 备选例题 的自变量的取值范围是( ) A. 且 B. C. 且 D.全体实数 ㈣总结反思,拓展升华 小结 1、立方根的概

14、念和性质 2、立方根与平方根的异同比较 ㈤课堂跟踪反馈 1、 当  ≥0 时,有意义;当 为一切实数 时,有意义 2、 的立方根是 -2 ,的平方根是 ±2 ,的立方根是 -2 3、 -8的立方根与的一个平方根的和等于 1或-5 4、 一个自然数的算术平方根是,那么与这个自然数相邻的下一个自然数的平方根是 ,立方根是 5、 解下列方程 ⑴ ⑵ ⑶ 6、已知,且,求的值 §13.3实数(1) 教学目标:了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的

15、运算,会用计算器进行实数的运算 重点:实数的意义和实数的分类;实数的运算法则及运算律 难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算 第1课时 ㈠创设情景,导入新课 略 ㈡合作交流,解读探究 探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , , , , , 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 , , , , , 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数 观察 通过前面的探讨和学习,我们知道,很多数的平方根和立

16、方根都是无限不循环小数,无限不循环小数又叫无理数,也是无理数 结论 有理数和无理数统称为实数 试一试 把实数分类 像有理数一样,无理数也有正负之分。例如,,是正无理数,,,是负无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢? 探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? 总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些

17、表示无理数 当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数 2、 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗? 总结 数的相反数是,这里表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0 ㈢应用迁移,巩固提高 例1 把下列各数分别填入相应的集合里: 正有理数{ }

18、 负有理数{ } 正无理数{ } 负无理数{ } 备选例题 下列实数中是无理数的为( ) A. 0 B. C. D. ㈣总结反思,拓展升华 小结 1、什么叫做无理数? 2、什么叫做有理数? 3、 有理数和数轴上的点一一对应吗? 4、 无理数和数轴上的点一一对应吗? 5、 实数和数轴上的点一一对应吗? ㈤课堂跟踪反馈 1、下列各数中,是无理数的是( ) A.

19、 B. C. D. 2、已知四个命题,正确的有( ) ⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数 ⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数 A. 1个 B. 2个 C. 3个 D.4个 3、若实数满足,则( ) A. B. C. D. 4、下列说法正确的有( ) ⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数 ⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数

20、都是负实数 ⑸非负实数中最小的数是0 A. 2个 B. 3个 C. 4个 D.5个 5、⑴的相反数是 ,绝对值是 ⑵ ⑶ 1 ⑷若,则 6、是实数,则 2 6、 已知实数、、在数轴上的位置如图所示: O 化简 (答案:) 第2课时 ㈠创设情景,导入新课 复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律 2、用字母表示有理数的加法交换律和结合律 3、平方差公式、完全平方公式

21、 4、有理数的混合运算顺序 ㈡合作交流,解读探究 自主探索 独立阅读,自习教材 总结 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。在进行实数的运算时,有理数的运算法则及运算性质等同样适用。 讨论 下列各式错在哪里? 1、 2、 3、 4、当时, 【练一练】计算下列各式的值: 解:⑴ ⑵ ⑴ ⑵ 总结 实数范围

22、内的运算方法及运算顺序与在有理数范围内都是一样的 试一试 计算: (精确到0.01) · (结果保留3个有效数字) 总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算 【练一练】计算 ⑴⑵⑶⑷ 提示 ⑴式的结构是平方差的形式 ⑶式的结构是完全平方的形式 总结 在实数范围内,乘法公式仍然适用 ㈢应用迁移,巩固提高 例1 为何值时,下列各式有意义? 例2 计算 ⑴求5的算术平方根于的平方根之和(保留3位有效数字) ⑵(精确到0.01) ⑶ ()(精确到

23、0.01) O 例3 已知实数在数轴上的位置如下,化简 例4 计算 ㈣总结反思,拓展升华 总结 1、实数的运算法则及运算律。 2、实数的相反数和绝对值的意义 ㈤课堂跟踪反馈 1、是实数,下列命题正确的是( ) A. ,则 B. 若,则 C. 若,则 D. 若,则 2、如果成立,那么实数的取值范围是( ) A. B. C. D. 3、的相反数是 , 的相反数是 4、当时, , 5、已知、、在数轴上如图,化简 O 6、在两个连续整数和之间,即,那么、的值是 3 、4 7、计算下列各题 仔细观察上面几道题及其计算结果,你能发现什么规律吗? 根据这个规律先写出下面的结果,并说明理由 解得

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服