1、第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1, 增幅(包括减幅)一般做加减。基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。例1:-8,15,39,65,94,128,170,()A180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,3
2、4,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。总结:做差不会超过三级;一些典型的数列要熟记在心2, 增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3, 增幅很大考虑幂次数列例3:2
3、,5,28,257,()A2006 B。1342 C。3503 D。3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即11,22,33,44,下一项应该是55,即3125,所以选D总结:对幂次数要熟悉第二步思路B:寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或
4、隔项。例4:1,2,7,13,49,24,343,()A35 B。69 C。114 D。238解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。总结:将等差和等比数列隔项杂糅是常见的考法。视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。20 5例5:64,24,44,34,39,()10A20 B。32 C 36.5 D。19解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等
5、比数列,下一项差应为5/2=2.5,易得出答案为36.5总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。视觉冲击点3:双括号。一定是隔项成规律!例6:1,3,3,5,7,9,13,15,(),()A19,21 B。19,23 C。21,23 D。27,30解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C例7:0,9,5,29,8,67,17,(),()A125,3 B。129,24 C。84,24 D。172,83解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,()
6、;9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是23+1,33+2,43+3的变式,下一项应是53+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1.总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计经验分享:在这里我想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是
7、给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的
8、。论坛有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。当然,有经济条件的同学,千万不要吝啬,花点小钱在自己的未来上是最值得的,多少年来耗了大量时间和精力,现在既然势在必得,就不要在乎这一刻。建议有条件的同学到这里用这个软件
9、训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的学习技巧,极力的推荐给大家(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)。其次,从选择的复习资料上来说,我用的是学习软件,不是一般的真题,我认为从电脑上面做题真的是把学习的效率提高了很多,再者这款软件集成最新题库、大纲资料、模拟、分析、动态等等各种超强的功能,性价比超高,是绝不可缺的一款必备工具,结合上速读的能力,如虎添翼,让整个备考过程效率倍增。到我推荐的这里就可以找到适合自己的科目(也给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)视觉冲击点4:分式。类型(1):整数和分数
10、混搭,提示做乘除。例8:1200,200,40,(),10/3A10 B。20 C。30 D。5解:整数和分数混搭,马上联想做商,很易得出答案为10类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。例9:3/15,1/3,3/7,1/2,()A5/8 B。4/9 C。15/27 D。-3解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现
11、分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27例10:-4/9,10/9,4/3,7/9,1/9A7/3 B 10/9 C -5/18 D -2解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得14,2,-5,-6,(-3.5),(-0.5) 与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18视觉冲击点5:正负交叠。基本思路是做商。例11:8/9, -2/3, 1/2, -3/8,()A 9/32 B 5/72 C 8/32 D 9/23解:
12、正负交叠,立马做商,发现是一个等比数列,易得出A视觉冲击点6:根式。类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内例12:0 3 1 6 2 12 ( ) ( ) 2 48A. 3 24 B3 36 C2 24 D2 36解:双括号先隔项有0,1,2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以2为基准数,其他数围绕它变形,将整数划一为根数有0 1 2 ()4,易知应填入3;支数列二是明显的公比为2的等比数列,因此答案为A类型(2)根数的加减式,基本思路是运用平方差公式:a2-b2=(a+b)(a-b)例13:2-1,1/(3+1
13、),1/3,()A(5-1)/4 B 2 C 1/(5-1) D 3解:形式划一:2-1=(2-1)(2+1)/(2+1)=(2-1)/ (2+1)=1/(2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+4),因此,易知下一项是1/(5+1)=( 5-1)/( 5)2-1= (5-1)/4.视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。例14:2,3,13,175,()A30625 B。30651 C。30759 D。30952解:观察,2,3很接近,1
14、3突然变大,考虑用2,3计算得出13有2*5+3=3,也有32+2*2=13等等,为使3,13,175也成规律,显然为132+3*2=175,所以下一项是1752+13*2=30651总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。例15:1.01,1.02,2.03,3.05,5.08,()A8.13 B。 8.013 C。7.12 D 7.012解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部
15、分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。总结:该题属于整数、小数部分各成独立规律例16:0.1,1.2,3.5,8.13,( )A 21.34 B 21.17 C 11.34 D 11.17解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A总结:该题属于整数和小数部分共同成规律视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。例17:1
16、,5,11,19,28,(),50A29 B。38 C。47 D。49解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。例18:763951,59367,7695,967,()A5936 B。69 C。769 D。76解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前
17、项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。例19:1807,2716,3625,()A5149 B。4534 C。4231 D。5847解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。第三步:另辟蹊径。一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再
18、还原回去。例20:0,6,24,60,120,()A186 B。210 C。220 D。226解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。例21:2,12,36,80,()A100 B。125 C 150 D。175解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*
19、2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。例22:1/6,2/3,3/2,8/3,()A.10/3 B.25/6 C.5 D.35/6解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。第四步:蒙猜法,不是办法的办法。有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。第一
20、蒙:选项里有整数也有小数,小数多半是答案。见例5:64,24,44,34,39,()A20 B。32 C 36.5 D。19直接猜C!例23:2,2,6,12,27,()A42 B 50 C 58.5 D 63.5猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。例24:-4/9,1
21、0/9,4/3,7/9,1/9,( )A7/3 B.10/9 C -5/18 D.-2猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十!例25:1,2,6,16,44,()A66 B。84 C。88 D。120猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。例26:0.,0
22、,1,5,23,()A119 B。79 C 63 D 47猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119第四蒙:利用选项之间的关系蒙。例27:0,9,5,29,8,67,17,(),()A125,3 B129,24 C 84,24 D172 83猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B例28:0,3,1,6,2,12,(),(),2,48A3,24 B。3,36 C 2,24 D2,36猜:同上题理,第一个括号肯定是3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100