ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:168KB ,
资源ID:7654285      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7654285.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(一次函数的应用(提高)知识讲解.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一次函数的应用(提高)知识讲解.doc

1、 一次函数的应用(提高) 【学习目标】 1. 能从实际问题的图象中获取所需信息; 2. 能够将实际问题转化为一次函数的问题并准确的列出一次函数的解析式; 3. 能利用一次函数的图象及其性质解决简单的实际问题; 4. 提高解决实际问题的能力.认识数学在现实生活中的意义,发展运用数学知识解决实际问题的能力. 【要点梳理】 要点一、数学建模的一般思路 数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建

2、模最困难的环节是将实际情景通过数学转化为什么样的函数模型. 要点二、正确认识实际问题的应用 在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解. 要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 要点三、选择最简方案问题 分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用. 【典型例题】 类型一、简单的实际问题 1

3、在全民健身环城越野赛中,甲乙两选手的行程(千米)随时间(时)变化的图象(全程)如图所示.下列说法正确的有( ): ①起跑后1小时内,甲在乙的前面; ②第1小时两人都跑了10千米; ③甲比乙先到达终点; ④两人都跑了20千米. A. 1 个 B. 2 个 C. 3 个 D. 4个 【答案】C; 【解析】①②④正确.在起跑1小时以内,甲的图象始终在乙的图象的上方,故甲在乙的前面;第一小时,两人所跑的路程均为10千米;乙比甲先到达终点;乙的速度是10千米/时,2小时跑了20千米,甲也跑了同样的路程.

4、 【总结升华】本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息,再分析这四个结论. 举一反三: 【变式】如图OB、AB分别表示甲、乙两名同学运动的一次函数图象,图中和分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①甲让乙先跑12米;②甲的速度比乙快1.5米/秒;③8秒钟内,乙在甲前面;④8秒钟后,甲超过了乙,其中正确的说法是(  ) A.①② B.①②③④ C.②③ D.①③④ 【答案】B; 提示:①由图形,=0时,甲在乙前边12米,即甲让乙先跑12米,故①正确;②当=8秒时,甲追上了乙,所以甲的速度比乙快12

5、÷8=1.5米/秒,故②正确;③8秒钟内,AB在OB的上面,即可知乙在甲前面,故③正确;④8秒钟后,AB在OB的下面,即可知甲超过了乙,故④正确. 故选择B. 类型二、方案选择问题 2、某办公用品销售商店推出两种优惠方案:①购一个书包,赠送一支水性笔;②购书包和水性笔一律按9折优惠,书包每个定价20元,水性笔每支定价5元,小丽和同学需买4个书包,水性笔若干(不少于4支). (1)分别写出两种优惠方法购买费用(元)与所买水性笔支数(支)之间和函数关系式; (2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜; (3)小丽和同学需买这种书包4个和水性笔12

6、支,请你设计怎样购买最经济. 【答案与解析】 解:(1)根据题意可得: 方案①购买费用与购买水性笔支数之间的函数关系式: =4×20+5(-4)=5+60(≥4); 方案②购买费用与购买水性笔支数之间的函数关系式; =4×20×0.9+5×0.9=4.5+72(≥4). (2)在同一坐标系内分别画出与的图象,如图所示,由图象可知: =24时,两个函数的函数值相等; >24时,对同一个,上的点都在上的点的上边即>; 4≤<24时,对同一个,上的点都在上的点的上边即<. 可得优惠方案:当购买24支水性笔时,方案①与方案②同样优惠;当购买水性笔不少于4支

7、但没超过24支时,方案①收费少,选方案①;当购买水性笔超过24支时,方案②收费少,选方案②. (3)小丽购买4个书包,12支水性笔时,12<24,应在方案①中,费用=5×12+60=120(元). 但题中有一个条件不可忽视,方案①购买4个书包赠4个水性笔,而方案②中一律9折,这让人不得不想到还可这样购买.两种优惠全用,在方案①中买4个书包这样得4支笔,总共买12支笔还差8支,去方案②中打9折购买,算一算总费用=4×20+5×0.9×8=80+36=116(元);而116<120. 故小丽这样买最经济:按方案①买4个书包得4支水性笔.按方案②买余下的8支水性笔. 【总结升华】(2)对的取

8、值情况进行分析选择优惠方案就是利用图象找取何值时,值相等的这个临界点,然后再根据图象谁在上面,在上面的图象花费大,在下面的图象花费小. 举一反三: 【变式】(2015•六盘水)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟. (1)分别表示出y1与x,y2与x的函数关系式. (2)月通话时间为多长时,A、B两种套餐收费一样? (3)什么情况下A套餐更省钱? 【答案】 解:(1)A套餐的收费方式:y1=0.1x+15; B套餐的收费方

9、式:y2=0.15x; (2)由0.1x+15=0.15x,得到x=300, 答:当月通话时间是300分钟时,A、B两种套餐收费一样; (3)当月通话时间多于300分钟时,A套餐更省钱. 3、(2015•内江)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等. (1)求每台电冰箱与空调的进价分别是多少? (2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总

10、利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润; (3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案. 【思路点拨】(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据“商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等”,列出方程,即可解答; (2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+1500

11、0,根据题意得:,得到,根据x为正整数,所以x=34,35,36,37,38,39,40,即合理的方案共有7种,利用一次函数的性质,确定获利最大的方案以及最大利润; (3)当电冰箱出厂价下调k(0<k<100)元时,则利润y=(k﹣50)x+15000,分两种情况讨论:当k﹣50>0;当k﹣50<0;利用一次函数的性质,即可解答. 【答案与解析】 解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元, 根据题意得:, 解得:x=1600, 经检验,x=1600是原方程的解, x+400=1600+400=2000, 答:每台空调的进价为1600元,则每台电冰箱

12、的进价为2000元. (2)设购进电冰箱x台,这100台家电的销售总利润为y元, 则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000, 根据题意得:, 解得:, ∵x为正整数, ∴x=34,35,36,37,38,39,40, ∴合理的方案共有7种, 即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台; ∵y=﹣50x+15000,k=﹣50<0, ∴y随x的增大而减小, ∴当x=34时,

13、y有最大值,最大值为:﹣50×34+15000=13300(元), 答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元. (3)当厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变, 则利润y=(2100﹣2000+k)x+(1750﹣1600)(100﹣x)=(k﹣50)x+15000, 当k﹣50>0,即50<k<100时,y随x的增大而增大, ∵, ∴当x=40时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台; 当k﹣50<0,即0<k<50时,y随x的增大而减小, ∵, ∴当x=34时,这100台家电销售总利润

14、最大,即购进电冰箱34台,空调66台; 答:当50<k<100时,购进电冰箱40台,空调60台销售总利润最大; 当0<k<50时,购进电冰箱34台,空调66台销售总利润最大. 【总结升华】本题考查了列分式方程解实际问题的运用,一次函数的解析式的性质的运用,解答时根据总利润═冰箱的利润+空调的利润建立解析式是关键. 4、某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案. 方案一:让每天所

15、有取奶的人到奶站的距离总和最小; 方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和. (1)若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置? 【思路点拨】(1)设取奶站建在距A楼米处,所有取奶的人到奶站的距离总和为米,求出各函数在自变量下的最小值,(2)设取奶站建在距A楼米处,列出等量关系式,解得. 【答案与解析】 解:(1)设取奶站建在距A楼米处,所有取奶的人到奶站的距离总和为米. ①当0≤≤40时, =20+70(40-)+60(100-)=-1l0

16、+8800. ∴当=40时,的最小值为4 400. ②当40<≤100时, =20+70(-40)+60(100-)=30+3200. 此时,的值大于4400. 因此按方案一建奶站,取奶站应建在B楼处. (2)设取奶站建在距A楼米处. ①当0≤≤40时,20+60(100-)=70(40-), 解得(舍去). ②当40<≤100时,20+60(100-)=70(-40), 解得=80,因此按方案二建奶站,取奶站应建在距A楼80米处. 【总结升华】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数随的变化,结合自变量的取值范围确定最值.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服