ImageVerifierCode 换一换
格式:DOC , 页数:34 ,大小:979.50KB ,
资源ID:7643945      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7643945.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(新人教版九年级数学第22章一元二次方程教案导学案(全章).doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新人教版九年级数学第22章一元二次方程教案导学案(全章).doc

1、第22章 一元二次方程 教材内容 1本单元教学的主要内容 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题 2本单元在教材中的地位与作用 一元二次方程是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程应该说,一元二次方程是本书的重点内容 教学目标 1知识与技能 了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题 2过程与方法 (1)通过丰富的实例,让学生合作探讨,老师点评分析

2、,建立数学模型根据数学模型恰如其分地给出一元二次方程的概念 (2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等 (3)通过掌握缺一次项的一元二次方程的解法直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程 (4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0,即(m-4)2+10不论m取何值,该方程都是一元二次方程【练习】27 1 2 进一步巩固一元二次方程的基本概念四、自主总结 拓展新知1、a0是ax2+bx+c=0成为一元二次方程的必要条

3、件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。五、课堂作业 P28 1 2 5 6 7 (课堂内外对应练习)教学理念/教学反思第2课时 一元二次方程(2)学 习目 标1、会进行简单的一元二次方程的试解;理解方程解的概念。2、会估算实际问题中方程的解,并理解方程解的实际意义。学习重点一元二次方程解的探索。学习难点一元二次方程近似解的探索。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】把方程3x(x1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。【问

4、题2】判断下列方程哪些是一元二次方程?为什么?x2+4x+=0 x2+3x2= x2x22xy3=0 a x2+bx+c=0复习巩固一元二次方程的相关概念。二、自主交流 探究新知【探究】猜测方程的解是什么?【归纳】使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解,又叫作一元二次方程的根【问题3】下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4【分析】要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根【问题4】认

5、真观察下列方程的结构形式,试写出下列方程的根,并说出你的理由。x2-16=0 (x+3)(x-2)=0 (x-2)2=49 x2-2x+1=25【分析】要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根或两个数的积为0的意义来思考解题解:x2-16=0 (x+3)(x-2)=0x2=16 x+3=0或x-2=0x=4 x=-3或x=2(x-2)2=49 x2-2x+1=25x-2=7 (x-1)2=25x=9或x=-5 x-1=5 x=6或x=-4探究一元二次方程根的概念以及作用进一步巩固方程的根的含义方程的根可以起到检验的作用检验一个数是否是方程的根三、自主应用 巩固新知【例1】

6、若x2是方程的一个根,你能求出a的值吗?【分析】根据根的定义可以知道,若一个数是方程的根,那么把这个数代入方程后,等号必定成立,于是可以构造出关于a的一元一次方程,进而解即可解:x2是方程的一个根 ,解之得: a【例2】若x=1是关于x的一元二次方程ax2+bx+c=0(a0)的一个根,求代数式2007(a+b+c)的值。【分析】如果一个数是方程的根,那么把该数代入方程一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解。解:x=1是关于x的一元二次方程ax2+bx+c=0(a0)的根 a+b+c=0 2007(a+b+c)=0【练习】28 1 2 方程的根的另一个作用代入方

7、程使等号成立四、自主总结 拓展新知1、一元二次方程根的概念;2、要会判断一个数是否是一元二次方程的根;3、要会用一些方法求一元二次方程的根五、课堂作业 P28 3 4 8 (课堂内外对应练习)【补充练习】1、方程x(x-1)=2的两根为【 】 Ax1=0,x2=1 Bx1=0,x2= -1 Cx1=1,x2=2 Dx1=-1,x2=22、方程x2-81=0的两个根分别是x1=_,x2=_3、已知方程5x2+mx-6=0的一个根是x=3,则m的值为_4、若一元二次方程ax2+bx+c=0(a0)有一个根为1,则a+b+c= ;若有一个根是-1,则b与a、c之间的关系为 ;若有一个根为0,则c=

8、。5、如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值教学理念/教学反思第3课时 解一元二次方程配方法(1)学 习目 标1、使学生会用直接开平方法解一元二次方程。2、渗透转化思想,掌握一些转化的技能。学习重点掌握直接开平方法解一元二次方程。学习难点灵活运用直接开平方法解一元二次方程。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】一桶某种油漆可刷的面积为1500dm2,小李用这桶漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为xdm,则一个正方体的表面积为6x2dm2,根据一桶油漆可刷的面积列出方程:106x2=1

9、500由此可得:x2=25根据平方根的意义,得x=5即x1=5,x2=-5可以验证5和-5是方程的两根,但棱长不能为负值,所以正方体的棱长为5dm。创设问题情境,激发学生兴趣,引出本节内容列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解二、自主交流 探究新知【探究】对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为,即将方程变为和两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=,x2=

10、。在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了。方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+ 3 )2=4,进行降次,得到 x+3=2 ,方程的根为x1= -1,x2= -5。【归纳】在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程即,如果方程能化成或的形式,那么可得或鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”把二次降为一次,进而解一元一次方程即可三、自主应用 巩固新知【例1】解下列方程:2y2=8 2(x-8)2=50(2 x-1)2+4=0 4x2-4x+1=0 【

11、分析】引导学生观察以上各个方程能否化成或的形式,若能,则可运用直接开平方法解。解:2y2=8 2(x-8)2=50 y2=4 (x-8)2=25 y=2 x-8=5 y1=2,y2=-2 x-8=5或x-8=-5 x1= 13,x2= -3(2 x-1)2+4=0 4x2-4x+1=0 (2 x-1)2=-40 当 b2-4ac0时, 0 x+= 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a、b、c代入式子x=(b2-4ac0)就可求

12、出方程的根 (2)这个式子叫做一元二次方程的求根公式 (3)利用求根公式解一元二次方程的方法叫公式法(4)由求根公式可知,一元二次方程最多有两个实数根【强调】用公式法解一元二次方程时,必须注意两点:将a、b、c的值代入公式时,一定要注意符号不能出错。式子b2-4ac0是公式的一部分。解有些二次项系数是具体数字的方程不必写。配方时方程两边同加上一次项系数一半的平方。配方到这一步,两边要进行开平方运算。被开方数必须是非负数。所以,要对进行分析。通过解方程发现归纳一元二次方程的求根公式三、自主应用 巩固新知【例】用公式法解下列方程(1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2-x

13、+ =0 (4)4x2-3x+2=0【分析】用公式法解一元二次方程,需先确定a、b、c的值、再算出b2-4ac的值、最后代入求根公式求解解:【说明】(1)一元二次方程ax2+bx+c=0(a0)的根是由一元二次方程的系数a、b、c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac0的前提下,把a、b、c的值代入x=(b2-4ac0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根【练习】37 1 主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式四、自主总结 拓展新知1、求根公式的推导过程;2、用公式法解一元二次方程的一般

14、步骤:先确定a、b、c的值、再算出b2-4ac的值、最后代入求根公式求解五、课堂作业 P42 5 (课堂内外对应练习)教学理念/教学反思第7课时 解一元二次方程公式法(2)学 习目 标使学生能用=b2-4ac的值判定一元二次方程的根的情况。学习重点使学生能用的值判定一元二次方程的根的情况。学习难点从具体题目来推出一元二次方程ax2+bx+c=0(a0)的=b2-4ac 的情况与根的情况的关系。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题】用公式法解下列方程,根据方程根的情况你有什么结论?2x2-3x=03x2-2x+1=0 4x2+x+1=0二、自主交流 探究新知【探究】根据问题

15、填写下表:方程b2-4ac的值b2-4ac的符号x1、x2的关系(填相等、不等或不存在)2x2-3x=090不相等3x2-2x+1=00=0相等4x2+x+1=0-150(0时,根据平方根的意义,等于一个具体数,所以一元一次方程的x1=x1=,即有两个不相等的实根当b2-4ac=0时,根据平方根的意义=0,所以x1=x2=,即有两个相等的实根;当b2-4ac0时,一元二次方程ax2+bx+c=0(a0)有两个不相等实数根即x1=,x2=。当= b2-4ac=0时,一元二次方程ax2+bx+c=0(a0)有两个相等实数根即x1=x2=。当=b2-4ac0的解集(用含a的式子表示)【分析】要求ax

16、+30的解集,就是求ax-3的解集,那么就转化为要判定a的值是正、负或0因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)0就可求出a的取值范围解:关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根 (-2a)2-4(a-2)(a+1)=4a2-4a2+4a+80 a0即ax-3 x- 所求不等式的解集为x0一元二次方程ax2+bx+c=0(a0)有两个不相等的实根;=b2-4ac =0一元二次方程ax2+bx+c=0(a0)有两个相等的实根;=b2-4ac 0一元二次方程ax2+bx+c=0(a0)没有实数根及其应用。五、课堂作

17、业 P42 4 (课堂内外对应练习)教学理念/教学反思第8课时 解一元二次方程因式分解法学 习目 标1、使学生理解用因式分解法解一元二次方程的基本思想,会用因式分解法解某些一元二次方程。2、使学生会根据目的具体情况,灵活运用适当方法解一元二次议程,从而提高分析问题和解决问题的能力。学习重点用因式分解法一元二次方程。学习难点理解因式分解法解一元二次方程的基本思想。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过xs物体离地的高度(单位:m)为10x-4.9x2。你能根据上述规律求出物体经过多少秒落回地面吗(精确到0.01s)?设物体经过xs落回

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服