ImageVerifierCode 换一换
格式:PPT , 页数:95 ,大小:1.50MB ,
资源ID:764174      下载积分:11 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/764174.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(问卷分析因素分析及其项目分析PPT课件.ppt)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

问卷分析因素分析及其项目分析PPT课件.ppt

1、主讲人:杨胜龙1.问卷项目分析因子分析实操2.项目分析因素分析3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.区分度相关法CRCR值21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.难度(通俗性)区分度(辨别力)实操44.检验方法:运用经验与心理学理论知识;临界比率值(CRCR值)法;相关法;45.采用求出各个题项的临界比率值(CRCR值)的方法,将未达显著水平的题项予以删除。即将总分按从高到低的顺序排列,得分位于前27%27%者为高分组,得分后27%27%者为

2、低分组,进行高低两个组在每题得分平均数上的差异显著性检验。题项的CRCR值达到.05.05以上的显著性的保留。46.用相关法计算题项得分与总问卷得分的相关系数。题项的值小于0.150.15并予以剔除。47.浅谈因子分析应用实例48.49.因子分析又称因素分析,传统的因子分析是探索性的因子分析,即因子分析是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的“共同因子”。50.人的心理结构具有层次性,即分为外显和内隐。但是作为具有同一性的个体来说,内隐的方面总是和外显的方面相互作用,内隐方面制约着

3、外显特征。所有我们经常说,一个人的内在自我会在相当程度上决定他的外在行为特征,表现为某些行为倾向具有高度的一致性或相关性。51.反过来说,我们可以通过对个体进行系统的观察和测量,从一组高度相关的行为倾向中,探索到某种稳定的内在心理结构,这就是因子分析所能做的。52.因子个数远远少于原有变量个数;因子能反映原有变量的绝大部分信息;因子之间的线性关系不显著;因子具有命名解释性。53.探索性因子分析验证性因子分析54.因子分析的基本思想和起源因子分析的基本模型因子分析的基本步骤55.共同度公共因子的方差贡献56.样本和测量变量因子分析适合度检验因子提取及其因子数确定因子旋转因子命名57.谢谢!58.

4、59.通过以上两个图我们不难发现,进行因子旋转是很有必要的,因为这可以使我们更容易将因子进行分组。建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。旋转的方法有很多,正交旋转(orthogonal rotation)(orthogonal rotation)和斜交旋转(oblique(oblique rotation)rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)(Varimax)。60.因子分析

5、的基本目标是找出少数几个公共因子,使这些因子能够在相当程度上解释一系列变量数据的变异。因此,如何提取因子以及提取几个因子就成了因子分析中的基本问题。61.因子提取的方法因子数的确定62.在提取公因子的时候,我们需要解决另外一个问题:抽取几个公共因子才算合适?每个因子的解释能力都是有限的,它只能反映原变量中一部分的变化信息。变量的剩余变异只能用其他的因子来解释。因此,抽取的公因子数目越多,解释能力越强,遗漏的信息越少。反之则越少,遗漏的变异信息就越多。63.那是不是因子数目越多越好呢?如果将所有的主成分全部选为因子,则因子数与原变量数相同,这时虽然能够完全的解释原有变量的变异信息,但却失去了因子

6、分析的意义。提取的公因子数越多,就不能达到简化变量结构的目的。所以,在确定因子分析时,我们需要在因子模型的准确性和简单性之间做较好的权衡。下面给大家介绍几种因子分析常用确定因子数的方法。64.比例法特征值大于1 1标准法碎石图法65.如图知,最左边的一个因子特征值最大,后续因子的特征值迅速减少,所以曲线也迅速下降。下降到某一点,开始变得平缓。平缓就意味着对应部分的各因子的特征值或贡献接近,它们在简化变量的过程中帮助不大,所以一般不再将其选为公共因子。简单的说,这种方法一般是以碎石图曲线从迅速下降到突然变平缓的那个拐点对应的因子数来确定的。66.此种方法比较直观。不足:1.主观性太强;2.关于拐

7、点的概念没有明确的定义;3.当“碎石图”比较模糊时,没有清晰的拐点,此时难以判断何处是拐点;4.此法缺少数量上的标准。67.此种方法要求提取的m个因子对原变量方差的解释率达到一定的比例。一般建议或者要求达到80%以上。但是实际应用中,根据问题性质和测量工具的成熟水平,也可以将标准定为40%-60%这一较低水平。68.从前面的讲述中我们知道,因子的特征值与其方差贡献具有对应关系。要求前m个因子的特征值总和达到一定的量。换句话说,选取的因子的特征值应该达到一定量,通常是以特征值大于1为默认标准。69.这种方法具有简单性和客观性。不足:1.它通常得到误用;2.此标准带有机械性;3.它可能导致过多估计

8、偶尔又会过少估计因子数;4.采用这种方法时,样本容量也会影响因子数。70.因子提取的方法因子提取的方法有很多,主要有主成分方法、加权最小平方法、极大似然法等,我们可以根据需要选择合适的因子提取方法。其中主成分方法是一种比较常用的提取因子的方法。71.在实证数据分析研究中,人们为了尽可能的完整的收集信息,对于每个样本往往要观测他的很多项指标,少到几项,多到几十项,这些指标之间通常不是相互独立而是相关的。因此,从统计分析角度角度来说,人们总是希望把大量的原始指标组合成较少的几个综合指标,从而使分析简化。比如描述一个人的身材需要用的指标有?但是当人们购买衣服时呢?72.因此,主成分法是用变量的线性组

9、合中能产生最大样品方差的那些组合(称主成分)作为公共因子来进行分析的方法。分析出来的主成分与原始变量的关系:1.每个主成分都是各原始变量的线性组合;2.主成分的数目远远少于原始变量的数目;3.主成分保留了原始变量的大部分信息;4.各主成分之间互不相关。73.测量变量的选择公共因子必须包括在测量变量中,且测量变量一定要与研究领域紧密相关。如果测量的变量与研究目的不相关,将导致假的公共因子的出现。统计学家建议,测量变量的数。目至少应该是公共因子数的3535倍。74.样本的大小统计学家建议,根据测量的变量数决定样本的容量。应达到一个测量项目对应5 5个被试的标准,且样本容量不得少于100100。Co

10、mreyComrey和LeeLee研究,在因素分析中,样本容量达到500500为非常好.1000.1000或更多则极好。75.巴特利球形检验(Barlett Test of SphericityBarlett Test of Sphericity)KMOKMO取样适合度检验76.用于检验相关阵是否是单位阵,即各变量是否独立。它是以变量的相关系数矩阵为出发点,HoHo:相关系数矩阵是一个单位阵。如果巴特利球形检验的统计计量数值较大,且其对应的概率P P值小于给定的显著性水平(.05.05或.01.01),则应该拒绝零假设HoHo;认为原有变量间的相关系数矩阵不是单位矩阵,变量间存在相关关系,可以

11、进行因子分析。反之.77.是通过比较各变量间简单相关系数和偏相关系数(在多元回归分析中,在消除其他变量影响的条件下,所计算的某两变量之间的相关系数。)的大小判断变量间的相关性,相关性强时,偏相关系数远小于简单相关系数,KMOKMO值接近1 1。78.共同度方差反应了数据的变化程度。某个测验分数的方差反应了被试在此测验中反应的差异性大小。对于该差异的来源。因子分析假设:每个测验变量都受到公共因子和随机误差的影响。因此我们的方差可以分为公共因子方差和误差方差。79.共同度而共同度为所有共同因子对某变量分数方差的贡献量,反映了该分数的变异中能够被所有公共因子共同解释的部分。所以将共同度理解为:所以因

12、子对这个变量共同起作用的程度。很明显,因子分析希望能用提取出的公共因子解释测量变量的绝大部分变异,即测量变量的共同度越接近1 1越好。同时它也是评估因子分析效果优劣的重要指标。80.公共因子方差贡献因子的方差贡献反应了该因子对原有变异量总方差的解释能力。该值越高,说明相应因子的重要性越高。因此,因子的方差贡献和方差贡献率是衡量因子重要性的关键标准。提醒:特征值代表某一因子对所有变量变异的方差贡献。81.探索性因子分析是指通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并且用少数几个潜在变量来表示基本的数据结构。82.目的在于用最少的“因子”,概括和解释最大量的观测事实,从而建立最简洁、最基本的概念系统,揭示出事物之间本质的联系。提示:我们常说的因子分析大都是指探索性因子分析83.验证性因子分析是基于一定的理论前提,对数据进行分析的统计技术,用它来检验测验的维度,正在逐渐被接受和应用。84.逻辑分析路线探索性因子分析:遵循由可直接观察的数据到数据的内部潜在影响因子这一自下而上的逻辑分析路线,探索事物之间的本质联系。85.逻辑分析路线验证性因子分析:遵循由理论到数据的自上而下的逻辑分析路线,首先提出的理论假设上可靠的因子结构模型,再运用实际的调查数据验证之。86.87.88.89.90.91.92.93.94.95.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服