ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:204.50KB ,
资源ID:7639801      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7639801.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(八年级数学下册《2.7 正方形》教案1 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册《2.7 正方形》教案1 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc

1、2.7正方形 教学目标 知识与技能: 了解正方形的有关概念,理解并掌握正方形的性质、判定方法. 过程与方法: 经历探索正方形有关性质、判定条件的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法. 情感态度与价值观: 培养合情推理能力和探究习惯,体会平面几何的内在价值. 重难点、关键 重点:探索正方形的性质与判定. 难点:掌握正方形的性质、判定的应用方法. 关键:把握正方形既是矩形又是菱形这一特性来学习本节课内容. 教学准备 教师准备:投影仪,制作

2、投影片,补充本节课内容,矩形纸片,活动的菱形框架. 学生准备:复习平行四边形、矩形、菱形性质、判定,预习本节课内容. 学法解析 1.认知起点:已积累了几何中平行四边形、矩形、菱形等知识,在取得一定的经验的基础上,认知正方形. 2.知识线索: 3.学习方式:采用自导自主学习的方法解决重点,突破难点. 教学过程 一、合作探究,导入新课 【显示投影片】 显示内容:展示生活中有关正方形的图片,幻灯片(多幅). 【活动方略】 教师活动:操作投影仪,边展示图片,边提出下面的问题:

3、1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?四个角呢? 2.正方形是矩形吗?是菱形吗?为什么? 3.正方形具有哪些性质呢? 学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过). 实验活动:教师拿出矩形按左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的特殊矩形是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊矩形是正方形. 教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:

4、 学生活动:观察、联想到它是矩形,所以具有矩形的所有性质,它又是菱形,所以它又具有菱形的一切性质,归纳如下: 正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形. 正方形性质: (1)边的性质:对边平行,四条边都相等. (2)角的性质:四个角都是直角. (3)对角线的性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角. (4)对称性:是轴对称图形,有四条对称轴. 【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点. 二、实践应用,探究新知 【课堂演练】(投影显示)

5、 演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与OA、OB相交于M、N. 求证:(1)BM=CN,(2)BM⊥CN. 思路点拨:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在△BOM与△CON是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5+∠CMG=90°,就可以了. 【活动方略】 教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流. 学生活动:课堂演练,相互讨论,解决演练题的问题. 证:(1)∵四边形ABCD

6、是正方形, ∴∠COB=∠BOM=90°,OC=OB, ∵MN∥AB,∴∠1=∠2,∠ABO=∠3, 又∵∠1=∠ABO=45°,∴∠2=∠3,∴OM=ON, ∴△CON≌△BOM,∴BM=CN. (2)由(1)知△BOM≌△CON, ∴∠4=∠5,∵∠4+∠BMO=90°, ∴∠5+∠BMC=90°,∴∠CGM=90°,∴BM⊥CN. 演练题2:已知:如图,正方形ABCD中,点E在AD边上,且AE=AD,F为AB的中点,求证:△CEF是直角三角形. 思路点拨:本题要证∠EFC=90°,从已知条件分析可以得到只要利用勾股逆定理,就可以解决问题.这里应用到正方形

7、性质. 【活动方略】 教师活动:用投影仪显示演练题2,组织学生应用正方形和勾股逆定理分析解析.并请同学上讲台分析思路,板演. 学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题. 证明:设AB=4a,在正方形ABCD中,DC=BC=4a,AF=FB=2a,AE=a,DE=3a. ∵∠B=∠A=∠D=90°,由勾股定理得: EF2+CF2=(AE2+AF2)+(CB2+BF2)=(a2+4a2)+(16a2+4a2)=25a2, CE2=CD2+DE2=(4a)2+(3a)2=25a2, ∴EF2+CF2=CE2. 由勾股定理的逆定理可知

8、△CEF是直角三角形. 【设计意图】补充两道关于正方形性质应用的演练题,提高学生的应用能力. 三、继续探究,学习新知 【问题牵引】 教师提问:怎样判定一个四边形是正方形呢?把你所想的判定方法写出来,并和同学们进行交流、证明. 学生活动:分四人小组进行合作讨论,归纳总结出判定正方形的方法如下: 判定方法: 1.是矩形,并且有一组邻边相等. 2.是菱形,并且有一个角是直角. 【投影显示】 例4 求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形. 思路点拨:这是一道文字题,首先

9、应该根据题意画出几何图形,然后依据图形写出已知求证,最后证明,本题可利用正方形性质:对角线互相垂直平分且相等,证出问题. 【活动方略】 教师活动:操作投影仪,画出图形,讲请怎样写出已知、求证. 已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O. 求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形. 【评析】这里教师可以让学生上台书写已知、求证.然后再纠正写法上的不足. 学生活动:分析文字题后,举手上讲台“板演”.上述证明思路:因为四边形ABCD是正方形,所以AC=BD,AC⊥BD,AO=BO=CO=DO.

10、∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形.且△ABO≌△BCO≌△CDO≌△DAO. 四、随堂练习,巩固深化 1.课本练习1,2,3. 2.【探研时空】 如图,把边长为2cm的正方形剪成四个全等的直角三角形. 请拼成尽可能多的四边形.要求:每次拼四边形全部用上这四个直角三角形,但这些三角形互不重叠且不留空隙. 思路点拨:思路1:特殊四边形,包括(1)菱形,除正方形之外只有一个,其边长为,对角线为2和4.图形略.(2)矩形,除正方形之外只有一个,其长为4,宽为1.图形略.(3)梯形,两个,一个是上底为1,下底为3,高为

11、2的等腰梯形;另一个是上底为2,下底为6,高为1的等腰梯形,图形略.(4)一般的平行四边形,共4个,其一,两组对边分别为2和,高为2和;其二,两组对边分别为1和2,高为4和;其三,两组对边分别为2和2,高为2和;其四,两组对边分别为4和,高为1和,图形略.思路2:一般凸四边形共两个,一个的四条边长分别为、2、2;另一个的四条边长分别为1、3、、,图形略. 【评析】这是一道是很好的分类讨论题. 五、课堂总结,发展潜能 【问题提出】 正方形、菱形、矩形、平行四边形四者之间有什么关系?同学们讨论、交流,并表示出来. 1.平行四边形、矩形、菱形、正方形的性质(投影显示) 边 角 对角线 平行四边形 矩形 菱形 正方形 2.平行四边形、矩形、菱形、正方形的判定 平行四边形 矩形 菱形 正方形

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服