ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:109.50KB ,
资源ID:7639732      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7639732.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册 3.7 正多边形教案 (新版)浙教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册 3.7 正多边形教案 (新版)浙教版.doc

1、3.7正多边形 教学内容 1正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距 2在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系 3正多边形的画法 教学目标 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形 复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容 重难点、关键 1重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系 2难点与关键:通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间

2、的关系 教学过程 一、复习引入 请同学们口答下面两个问题 1什么叫正多边形? 2从你身边举出两三个正多边形的实例,正多边形具有轴对称、中心对称吗?其对称轴有几条,对称中心是哪一点? 老师点评:1各边相等,各角也相等的多边形是正多边形2实例略正多边形是轴对称图形,对称轴有无数多条;正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点 幻灯片1)想一想:菱形是正多边形吗?矩形、正方形呢? 幻灯片2) 二、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以

3、O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上 因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆 我们以圆内接正六边形为例证明 如图所示的圆,把O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形 AB=BC=CD=DE=EF AB=BC=CD=DE=EF 又A=BCF=(BC+CD+DE+EF)=2BC B=CDA=(CD+DE+EF+FA)=2CD A=B 同理可证:B=C=D=E=F=A 又六边形ABCDEF的顶点都在O上根据正多边形的定义,各边相等、各角相等、六边形

4、ABCDEF是O的内接正六边形,O是正六边形ABCDEF的外接圆这个正多边形就是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆 幻灯片4) 为了今后学习和应用的方便,我们把一个正多边形的外接圆的圆心叫做这个多边形的中心 外接圆的半径叫做正多边形的半径 正多边形每一边所对的圆心角叫做正多边形的中心角中心到正多边形的一边的距离叫做正多边形的边心距 思考:正多边形有内切圆吗?如果有,请指出它的圆心与半径. 内切圆的半径与边心距有什么关系?幻灯片5)FADE.OBrRP.例1:有一个亭子它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1平方米). 幻灯片6)抢答题:1、O是正ABC

5、的中心,它是ABC的圆与圆的圆心。2、OB叫正ABC的,它是正ABC的圆的半径。3、OD叫作正ABC的,它是正ABC的 圆的半径。4、正方形ABCD的外接圆圆心O叫做正方形ABCD的5、正方形ABCD的内切圆的半径OE叫做正方形ABCD的6、O是正五边形ABCDE的外接圆,弦AB的弦心距OF叫正五边形ABCDE的,它是正五边形ABCDE的圆的半径。7、 AOB叫做正五边形ABCDE的角,它的度数是8、图中正六边形ABCDEF的中心角是。它的度数是9、你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么? 幻灯片7幻灯片10) 三、归纳小结(学生小结,老师点评) 本节课应掌握: 1正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距 2正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系 四、课后巩固:1、 P107习题24.3复习巩固1(做在书上) 2、 P107习题24.3复习巩固2、3题五、课后反思:1、适当增加了正多边形的内切圆的内容;2、课本例题中用到了“正多边形的面积等于周长与边心距之积的二分之一”,在教学中让学生进行了论证。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服