1、3.1 探索勾股定理教学目标1、知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用2、过程与方法 让学生经历“观察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系3、情感态度与价值观在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。教学难点:勾股定理
2、的发现教学准备:多媒体课件教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、欣赏)内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号今天我们就来一同探索勾股定理(板书课题)第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)1探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方
3、形的面积的和,等于以斜边为边长的正方形的面积2探究活动二:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)(4)分析填表的数据,你发现了什么?学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积3议一议:内容:(1)你能用直角三角形的边长、来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以
4、5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem):如果直角三角形两直角边长分别为、,斜边长为,那么即直角三角形两直角边的平方和等于斜边的平方数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方称为毕达哥拉斯定理)第三环节:勾股定理的简单应用(7分钟,学生合作探究)内容:例 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?(教师板演解题过程)第四环节:巩固练习(
5、10分钟,学生先独立完成,后全班交流)1、列图形中未知正方形的面积或未知边的长度:2、生活中的应用: 小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了你同意他的想法吗?你能解释这是为什么吗?第五环节:课堂小结(3分钟,师生对答,共同总结)内容:教师提问:1这一节课我们一起学习了哪些知识和思想方法?2对这些内容你有什么体会?请与你的同伴交流在学生自由发言的基础上,师生共同总结:1知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么.2方法: 观察探索猜想验证归纳应用; 面积法; “割、补、拼、接”法.3思想: 特殊一般特殊; 数形结合思想布置作业:作业:1课本习题1.1;2阅读读一读勾股世界;3观察下图,探究图中三角形的三边长是否满足.要求:必做1、2、 选做:3