1、课 题281 锐角三角函数教学目标知识与技能熟记30、45、60角的三角函数值,并会由一个特殊角的三角函数值说出这个角的度数。过程与方法逐步培养学生观察、比较、分析、概括的思维能力。情感态度与价值观引导学生结合图形,探索数量关系,培养学习数学的兴趣,进一步领会数形结合的思想方法。教学重点由一个特殊角的三角函数值说出这个角的度数教学难点结合图形,写出特殊角的三角函数,理解30、45、60角的三角函数值的由来。教学方法启发式教学用具多 媒 体课时安排1教 学 内 容设计与反思 教 学 内 容设计与反思一、自学提纲:一个直角三角形中,一个锐角正弦是怎么定义的? 一个锐角余弦是怎么定义的? 一个锐角正
2、切是怎么定义的? 二、合作交流:思考:两块三角尺中有几个不同的锐角? 是多少度? 你能分别求出这几个锐角的正弦值、余弦值和正切值码? 归纳结果304560siaAcosAtanA例3:求下列各式的值 (1)cos260+sin260 (2)-tan45例4:(1)如图(1),在RtABC中,C=90,AB=,BC=,求A的度数 (2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a四、学生展示:1已知:RtABC中,C=90,cosA=,AB=15,则AC的长是( ) A3 B6 C9 D122下列各式中不正确的是( ) Asin260+cos260=1 Bsin30+cos30=
3、1 Csin35=cos55 Dtan45sin453计算2sin30-2cos60+tan45的结果是( ) A2 B C D14已知A为锐角,且cosA,那么( ) A0A60B60A90 C0A30D30A60时,cosa的值( ) A小于 B大于 C大于 D大于18在ABC中,三边之比为a:b:c=1:2,则sinA+tanA等于( )A9已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则CAB等于( ) A30 B60 C45 D以上都不对10sin272+sin218的值是( ) A1 B0 C D11若(tanA-3)2+2cosB-=0,则ABC( ) A是直角三角形 B是等边三角形 C是含有60的任意三角形 D是顶角为钝角的等腰三角形三、填空题12设、均为锐角,且sin-cos=0,则+=_13的值是_14已知,等腰ABC的腰长为4,底为30,则底边上的高为_,周长为_15在RtABC中,C=90,已知tanB=,则cosA=_五、课堂小结:要牢记下表:304560siaAcosAtanA六、作业设置:课本 第85页 习题281复习巩固第3题七、教学效果追忆: