ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:135KB ,
资源ID:7638923      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7638923.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学上册 第十三章 轴对称13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质教案1(新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学上册 第十三章 轴对称13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质教案1(新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc

1、133等腰三角形133.1等腰三角形第1课时等腰三角形的性质1理解并掌握等腰三角形的性质(重点)2经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的ABC有什么特点?二、合作探究探究点一:等腰三角形的概念【类型一】 利用等腰三角形的概念求边长或周长 如果等腰三角形两边长是6cm和3cm,那么它的周长是()A9cm B12cmC15cm或12cm D15cm解析:当腰为3cm时,336,不能构成三角形,因此这种情况不成立当腰为6cm时,63663,能构成三角形;此时等腰三角形的周长为

2、66315(cm)故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去探究点二:等腰三角形的性质【类型一】 利用“等边对等角”求角度 等腰三角形的一个内角是50,则这个三角形的底角的大小是()A65或50 B80或40C65或80 D50或80解析:当50的角是底角时,三角形的底角就是50;当50的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论【类型二】 利用方程思想求等腰三角形角

3、的度数 如图,在ABC中,ABAC,点D在AC上,且BDBCAD,求ABC各角的度数解析:设Ax,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数解:设Ax.ADBD,ABDAx.BDBC,BCDBDCABDA2x.ABAC,ABCBCD2x.在ABC中,AABCACB180,x2x2x180,x36,A36,ABCACB72.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.【类型三】 利用“等边对等角”的性质进行证明 如图,已知ABC为等腰三角形,BD、CE为底角的平分线

4、,且DBCF,求证:ECDF.解析:先由等腰三角形的性质得出ABCACB,根据角平分线定义得到DBCABC,ECBACB,那么DBCECB,再由DBCF,等量代换得到ECBF,于是根据平行线的判定得出ECDF.证明:ABC为等腰三角形,ABAC,ABCACB.又BD、CE为底角的平分线,DBCABC,ECBACB,DBCECB.DBCF,ECBF,ECDF.方法总结:证明线段的平行关系,主要是通过证明角相等或互补【类型四】 利用等腰三角形“三线合一”的性质进行证明 如图,点D、E在ABC的边BC上,ABAC.(1)若ADAE,求证:BDCE;(2)若BDCE,F为DE的中点,如图,求证:AFB

5、C.解析:(1)过A作AGBC于G,根据等腰三角形的性质得出BGCG,DGEG即可证明;(2)先证BFCF,再根据等腰三角形的性质证明证明:(1)如图,过A作AGBC于G.ABAC,ADAE,BGCG,DGEG,BGDGCGEG,BDCE;(2)BDCE,F为DE的中点,BDDFCEEF,BFCF.ABAC,AFBC.方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线【类型五】 与等腰三角形的性质有关的探究性问题 如图,已知ABC是等腰直角三角形,BAC90,BE是ABC的平分线,DEBC,垂足为D.(1)请你写出图中所有的

6、等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由(3)如果BC10,求ABAE的长解析:(1)由ABC是等腰直角三角形,BE为角平分线,可证得ABEDBE,即ABBD,AEDE,所以ABD和ADE均为等腰三角形;由C45,EDDC,可知EDC也符合题意;(2)BE是ABC的平分线,DEBC,根据角平分线定理可知ABE关于BE与DBE对称,可得出BEAD;(3)根据(2),可知ABE关于BE与DBE对称,且DEC为等腰直角三角形,可推出ABAEBDDCBC10.解:(1)ABC,ABD,ADE,EDC.(2)AD与BE垂直证明:由BE为ABC的平分线,知ABEDBE,BAEBDE90,BE

7、BE,ABEDBE,ABE沿BE折叠,一定与DBE重合,A、D是对称点,ADBE.(3)BE是ABC的平分线,DEBC,EAAB,AEDE.在RtABE和RtDBE中,RtABERtDBE(HL),ABBD.又ABC是等腰直角三角形,BAC90,C45.又EDBC,DCE为等腰直角三角形,DEDC,ABAEBDDCBC10.三、板书设计1等腰三角形的性质2解题方法:设辅助未知数法与拼凑法3重要的数学思想方法:方程思想、整体思想和转化思想本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服