ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:264.50KB ,
资源ID:7638335      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7638335.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(八年级数学上册 12.3 等腰三角形(第3-5课时)教案 新人教版-新人教版初中八年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学上册 12.3 等腰三角形(第3-5课时)教案 新人教版-新人教版初中八年级上册数学教案.doc

1、12.3等腰三角形 等边三角形(一) 教学目的 1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。 2. 熟识等边三角形的性质及判定. 2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。 教学重点、 等腰三角形的性质及其应用。 教学难点 简洁的逻辑推理。 教学过程 一、复习巩固 1.叙述等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。

2、等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。 2.若等腰三角形的两边长为3和4,则其周长为多少? 二、新课 在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢? 1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

3、2.你能否用已知的知识,通过推理得到你的猜想是正确的? 等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。 3.上面的条件和结论如何叙述? 等边三角形的各角都相等,并且每一个角都等于60°。 等边三角形是轴对称图形吗?如果是,有几条对称轴? 等边三角形也称为正三角形。 例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。 分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线

4、合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。 问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样? 问题2:求∠1是否还有其它方法? 三、练习巩固 1.判断下列命题,对的打“√”,错的打“×”。 a.等腰三角形的角平分线,中线和高互相重合( ) b.有一个角是60°的等腰三角形,其它两个内角也为60°( ) 2.如图(2),在△ABC中,已知AB=AC

5、AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。 四、小结 由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。 五、作业 1.课本─7,9 2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC, ∠EOD的度数。 (一)课本─ 课后作业: 等边三角形(二) 教学目标 掌握等

6、边三角形的性质和判定方法. 培养分析问题、解决问题的能力. 教学重点 等边三角形的性质和判定方法. 教学难点 等边三角形性质的应用 教学过程 I创设情境,提出问题 回顾上节课讲过的等边三角形的有关知识 1.等边三角形是轴对称图形,它有三条对称轴. 2.等边三角形每一个角相等,都等于60° 3.三个角都相等的三角形是等边三角形. 4.有一个角是60°的等腰三角形是等边三角形. 其中1、2是等边三角形的性质;3、4的等边三角形的判断方法. II例题与练习 1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

7、 ①在边AB、AC上分别截取AD=AE. ②作∠ADE=60°,D、E分别在边AB、AC上. ③过边AB上D点作DE∥BC,交边AC于E点. 2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小. 分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°. III课堂小结 1、 等腰三角形和性质 2、 等腰三角形的条件 V布置作业 1.教科书练习1、2 2.选做题: (1)教科书习题12.3第ll

8、题. (2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个? (3)《课堂感悟与探究》 等边三角形(三) 教学过程 一、 复习等腰三角形的判定与性质 二、 新授: 1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等 2.等边三角形的判定: 三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 注意:推

9、论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系. 3.由学生解答课本的例子; 4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B, ∠ABC=120o, 求证: AB=2BC 分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了. B 证明: 过A作AE∥BC交

10、BD的延长线于E ∵DB⊥BC(已知) ∴∠AED=90o (两直线平行内错角相等) 在△ADE和△CDB中 ∴△ADE≌△CDB(AAS) ∴AE=CB(全等三角形的对应边相等) ∵∠ABC=120o,DB⊥BC(已知) ∴∠ABD=30o 在Rt△ABE中,∠ABD=30o ∴AE=AB(在直角三角形中,如果一个锐角等于30o, 那么它所对的直角边等于斜边的一半) ∴BC=AB 即AB=2BC 点评 本题还可过C作CE∥AB 5、训练:如图所示,在等边△ABC的边的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同一侧,点M为线

11、段AD的中点,点N为线段BE的中点,求证:△CNM是等边三角形. 分析 由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等边三角形,只须证MC=CN,∠MCN=60o,所以要证△NBC≌△MAC,由上述已推出的结论,根据边角边公里,可证得△NBC≌△MAC 证明:∵等边△ABC和等边△DCE, ∴BC=AC,CD=CE,(等边三角形的边相等) ∠BCA=∠DCE=60o(等边三角形的每个角都是60) ∴∠BCE=∠DCA ∴△BCE≌△ACD(SAS) ∴∠EBC=∠DAC(全等三角形的对应角

12、相等) BE=AD(全等三角形的对应边相等) 又∵BN=BE,AM=AD(中点定义) ∴BN=AM ∴△NBC≌△MAC(SAS) ∴CM=CN(全等三角形的对应边相等) ∠ACM=∠BCN(全等三角形的对应角相等) ∴∠MCN=∠ACB=60o ∴△MCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形) 解题小结 1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析 2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△MCN是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键. 三、小结本节知识 四、作业:课本第13,14题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服