ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:829.50KB ,
资源ID:7637334      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7637334.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(春九年级数学下册 第三章 圆 3.6 直线与圆的位置关系 第1课时 直线和圆的位置关系及切线的性质教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

春九年级数学下册 第三章 圆 3.6 直线与圆的位置关系 第1课时 直线和圆的位置关系及切线的性质教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc

1、3.6 直线和圆的位置关系 第1课时 直线和圆的位置关系及切线的性质 1.理解直线和圆的相交、相切、相离三种位置关系;(重点) 2.掌握直线和圆的三种位置关系的判定方法; (难点) 3.掌握切线的性质定理,会用切线的性质解决问题.(重点)                     一、情境导入 在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线与圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个? 二、合作探究 探究点一:直线和圆的位置关系 【类型一】 判定直线和圆的位置关系 已知⊙O半径为3,M为直线AB上一点,若MO=3

2、则直线AB与⊙O的位置关系为(  ) A.相切 B.相交 C.相切或相离 D.相切或相交 解析:因为垂线段最短,所以圆心到直线的距离小于等于3,则直线和圆相交、相切都有可能.故选D. 方法总结:判断直线和圆的位置关系,必须明确圆心到直线的距离.特别注意:这里的3不一定是圆心到直线的距离. 变式训练:见《学练优》本课时练习“课堂达标训练”第3题 【类型二】 根据直线和圆的位置关系,求线段的长或取值范围 在Rt△ABC中,∠C=90°,AC=BC,CD⊥AB于点D,若以点C为圆心,以2cm长为半径的圆与斜边AB相切,那么BC的长等于(  ) A.2cm B.2cm

3、 C.2cm D.4cm 解析:如图所示,∵在Rt△ABC中,∠C=90°,AC=BC,CD⊥AB,∴△ABC是等腰直角三角形. ∵以点C为圆心,以2cm长为半径的圆与斜边AB相切,∴CD=2cm.∵∠B=45°,∴CD=BD=2cm,∴BC===2(cm).故选B. 方法总结:解决问题的关键是根据题意画出图形,利用直线和圆的三种位置关系解答. 变式训练:见《学练优》本课时练习“课后巩固提升”第2题 【类型三】 在平面直角坐标系中,解决直线和圆的位置关系的问题 如图,在平面直角坐标系中,已知⊙O的半径为1,动直线AB与x轴交于点P(x,0),且满足直线AB与x轴正方向夹角

4、为45°,若直线AB与⊙O有公共点,则x的取值范围是(  ) A.-1≤x≤1 B.- <x< C.0≤x≤ D.- ≤x≤ 解析:当直线AB与⊙O相切且与x轴正半轴相交时,设切点为C,连接OC.∵直线AB与x轴正方向夹角为45°,∴△POC是等腰直角三角形.∵⊙O的半径为1,∴OC=PC=1,∴OP==,∴点P的坐标为(,0).同理可得,当直线AB与x轴负半轴相交时,点P的坐标为(-,0),∴x的取值范围为-≤x≤.故选D. 方法总结:解决本题要熟知直线和圆的三种位置关系,关键是有公共点的情况不要遗漏. 变式训练:见《学练优》本课时练习“课后巩固提升”第3题 探究点二:切

5、线的性质 【类型一】 利用切线的性质求线段长 如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径. 解析:设圆的半径是x,利用勾股定理可得关于x的方程,求出x的值. 解:如图,连接OA,∵PA切⊙O于A点,∴OA⊥PA.设OA=x,∴OP=x+2.在Rt△OPA中,x2+42=(x+2)2,∴x=3,∴⊙O的半径为3. 方法总结:运用切线的性质来进行计算或证明时,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型二】 圆的切线与相似三角形的综合

6、如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E,连接CD. (1)求证:点E是边BC的中点; (2)求证:BC2=BD·BA; (3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形. 解析:(1)利用切线的性质及圆周角定理证明;(2)利用相似三角形证明;(3)利用正方形的性质证明. 证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,

7、∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=BE.∴EB=EC,即点E为边BC的中点; (2)∵AC为直径, ∴∠ADC=∠ACB=∠BDC=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴=,∴BC2=BD·BA; (3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=180°-∠ADC-∠OCD=180°-90°-45°=45°,∴Rt△ABC为等腰直角三角形. 方法总结:本题的综合性比较强,但难度不大,解决问题的关键是综合运用学过的知识解答.另外,连接圆心和切点,构造直角三角形也是解

8、题的关键. 【类型三】 圆的切线与三角函数的综合 如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F点. (1)求证:∠ABC=∠F; (2)若sinC=,DF=6,求⊙O的半径. 解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答. (1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°

9、∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F; (2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=,BD=8,∴AB=.∴⊙O的半径为. 方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 三、板书设计 直线和圆的位置关系及切线的性质 1.直线和圆的位置关系: ①直线l与圆O相交⇔d<r; ②直线l与圆O相切⇔d=r; ③直线l与圆O相离⇔d>r. 2.切线的性质及运用 在探索直线和圆位置关系所对应的数量关系时,先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松地就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服