ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:849.50KB ,
资源ID:7636943      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7636943.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册 第二章 一元二次方程 2.3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册 第二章 一元二次方程 2.3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc

1、2.3 用公式法求解一元二次方程教学目标 (一)教学知识点 1一元二次方程的求根公式的推导; 2会用求根公式解一元二次方程. (二)能力训练要求 1通过公式推导,加强推理技能训练,进一步发展逻辑思维能力; 2会用公式法解简单的数字系数的一元二次方程 (三)情感与价值观要求 通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯教学重点 一元二次方程的求根公式教学难点 求根公式的条件:b2-4ac0教学方法 讲练相结合教具准备 投影片五张第一张:复习练习第二张:试一试 第三张:小亮的推导过程 第四张:求根公式 第五张:例题教学过程 巧设现实情景,引入课题师我们前面学习了一元二

2、次方程的解法下面来做一练习以巩固其解法 1用配方法解方程2x2-7x+30生甲解:2x2-7x+30, 两边都除以2,得x2-x+0 移项,得;x2-x=- 配方,得x2-x+(-)2-+(-)2 两边分别开平方,得 x- 即x-=或x-=- x1=3,x2= 师同学们做得很好,接下来大家来试着做一做下面的练习试一试,肯定行:1用配方法解下列关于x的方程:(1)x2+ax1;(2)x2+2bx+4ac0 生乙(1)解x2+ax1, 配方得x2+ax+()21+()2, (x+)2= 两边都开平方,得 x+, 即x+,x+=-. x1=, x2 生丙(2)解x2-2bx+4ac0, 移项,得x2

3、+2bx-4ac 配方,得x2-2bx+b2-4ac+b2, (x+b)2=b2-4ac 两边同时开平方,得 x+b, 即 x+b,x+b- x1=-b+,x2-b- 生丁老师,我觉得丁同学做错了,他通过配方得到(x+b)2b2-4ac根据平方根的性质知道:只有正数和零才有平方根,即只有在b2-4ac0时,才可以用开平方法解出x来所以,在这里应该加一个条件:b2-4ac0 师噢,同学们来想一想,讨论讨论,戊同学说得有道理吗? 生齐声戊同学说得正确因为负数没有平方根,所以,解方程x2+2bx+4ac0时,必须有条件:b2-4ac0,才有丁同学求出的解否则,这个方程就没有实数解 师同学们理解得很正

4、确,那解方程x2+ax1时用不用加条件呢? 生齐声不用 师那为什么呢? 生齐声因为把方程x2+ax1配方变形为(x+)2= ,右边就是一个正数,所以就不必加条件了 师好,从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的因此,如果能用配方法解一般的一元二次方程ax2+bx+c0(a0),得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多 这节课我们就来探讨一元二次方程的求根公式 讲授新课 师刚才我们已经利用配方法求解了四个一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c0(a0)呢? 大家可参照解方程2x2-7x+30的步骤进行 生甲因为方程的二次

5、项系数不为1,所以首先应把方程的二次项系数变为1,即方程两边都除以二次项系数a,得 x2+ =0 生乙因为这里的二次项系数不为0,所以,方程ax2+bx+c0(a0)的两边都除以a时,需要说明a0 师对,以前我们解的方程都是数字系数,显然就可以看到:二次项系数不为0,所以无需特殊说明,而方程ax2+bx+c0(a0)的两边都除以a时,必须说明a0 好,接下来该如何呢? 生丙移项,得x2+配方,得x2+,(x+. 师这时,可以直接开平方求解吗? 生丁不,还需要讨论 因为a0,所以4a20当b2-4ac0时,就可以开平方 师对,在进行开方运算时,被开方数必须是非负数,即要求0因为4a20恒成立,所

6、以只需b2-4ac是非负数即可 因此,方程(x+)2的两边同时开方,得x+=. 大家来想一想,讨论讨论: =吗? 师当b2-4ac0时,x+=因为式子前面有双重符号“”,所以无论a0还是a0等条件在推导过程中的应用,也要弄清其中的道理 (2)应用求根公式解一元二次方程,通常应把方程写成一般形式,并写出a、b、c的数值以及计算b2-4ac的值,当熟练掌握求根公式后,可以简化求解过程 课后作业 活动与探究 1阅读材料,解答问题: 阅读材料: 为解方程(x2-1)2-5(x2-1)+40,我们可以将(x2-1)视为一个整体,然后设x2-1y,则(x2-1)2y2,原方程化为y2-5y+4=0 解得y

7、1=4,y21 当y14时,x2-14, x25,x= 当y1时,x2-11, x22,x= 原方程的解为x1,x2-, x3= ,x4=-. 解答问题: (1)填空: 在由原方程得到方程的过程中,利用 法达到了降次的目的,体现了 的数学思想 (2)解方程x4-x2-60 过程通过对本题的阅读,让学生在获取知识的同时,来提高学生的阅读理解和解决问题的能力 结果 解:(1)换元 转化 (2)设x2y,则x4=y2, 原方程可以化为y2-y-60 解得y1=3,y2-2 当y1=3时,x23,x 当y2-2时,x2=-2,此方程无实根 原方程的解为x1,x2-板书设计 23 公式法一、解:2x2-7x+30,两边都除以2,得x2-=0移项,得x2-.配方,得x2-(x-.两边分别开平方,得x-,即x- 或x-.x1=3,x2=二、求根公式的推导三、课堂练习四、课时小结五、课后作业

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服