ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:386KB ,
资源ID:7636499      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7636499.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(贵州省贵阳市花溪二中八年级数学下册《3.3.1分式的加减法(一)》教案 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

贵州省贵阳市花溪二中八年级数学下册《3.3.1分式的加减法(一)》教案 北师大版.doc

1、第四课时课 题3.3.1 分式的加减法(一)教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.教学难点当分式的分子是多项式时的

2、分式的减法.教学方法启发与探究相结合教具准备投影片四张:第一张:提出问题,(记作3.3.1 A);第二张:想一想,做一做,(记作3.3.1 B);第三张:想一想,(记作3.3.1 C);第四张:议一议,(记作3.3.1 D);第五张:例1,记作(3.3.1 E);第六张:补充练习,(记作3.3.1 F).教学过程.创设现实情境,提出问题师上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片 3.3.1 A) 问题一:从甲地到乙地有两条路,每条路都是3 km,其中第一条是平路,第二条有1 km的上坡路、2 km的下坡路.小丽在上坡路上的骑车速度为

3、v km/h,在平路上的骑车速度为2 v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?生问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(+)h.(2)走第一条路,小丽从甲地到乙地需要的时间为h.但要求出小丽走哪条路花费的时间少.就需要比较(+)与的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.生如果要比较(+)与的大小,就

4、比较难了,因为它们的分母中都含有字母.生比较两个数的大小,我们可以用作差法.例如有两个数a,b.如果ab0,则ab;如果ab=0,则a=b;如果ab0,则ab.师这位同学想得方法很好,显然(+)和中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.生如果用作差的方法,例如(+),如何判断它大于零,等于零,小于零呢?师我们不妨观察(+)中的每一项都是分式,这是什么样的运算呢?生分式的加减法.师很好!这正是我们这节课要学习的内容分式的加减法(板书课题)我们再来看一下问题二.生问题二中这个人用电脑录入3000字的文稿需小时,利用分式的基本性质化简,即为小时;用手抄3000字文

5、稿则需用小时,因此这个人录入3000字的文稿比手抄少用()小时.生, 是分式,是分式的加减法.师但和问题一中加减法比较一下,你会发现什么?生问题一中的是异分母的分式相加减,而问题二是同分母的加减法.师很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法.讲授新课1.同分母的加减法师我们接着看下面的问题(出示投影片3.3.1 B)想一想(1)同分母的分数如何加减?你能举例说明吗?(2)你认为分母相同的分式应该如何加减?做一做(1)+=_.(2)=_.(3)+=_.生同分母的分数的加减是分母不变,把分子相加减,例如+=.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不

6、变,把分子相加减.师谁能试着到黑板上板演“做一做”中的三个小题.生1解:(1)+=;生2解:(2)=;生3解:+=.师我们一块来讲评一下上面三位同学的运算过程.生第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=x+2.师这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.生第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x+1)分母不变,做得对,但三个分式的分子x+2、x1、x3相加减应为(x+2)(x1)+(x3).师的确如此,我们知道列代数式时,(x1)(x+1)要写成分式的形

7、式即,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.生老师,是我做错了.第(3)题应为:(3)+=师发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步.通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则:同分母的分式相加减,分母不变,把分子相加减,用式子表示是:=(其中a、b既可以是数,也可以是整式,c是含有字母的非零的整式).前面问题二现在可以完成了吧!大胆地试一试.生=,所以这个人录入3000字文稿比手抄少用个小时.2.简单的异分母的分式相加减生问题一还没有解决呢?师是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经

8、验,合作交流,找到一个可行的方法.出示投影片(3.3.1 C)想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如+应如何计算.生 异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法生 我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.师 同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.(出示投影片 3.3.1 D)小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法

9、,但他俩的具体做法不同:小明:+=+=+=.小亮:+=+=+=.你对这两种做法有何评论?与同伴交流.生 我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:+.如果+=+=+=,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即+=+=+=.生 我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.师同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分

10、母.例如+,a和4a的最简公分母是4a.下面我们再来看几个例子.出示投影片(3.3.1 E)例1计算:(1)+;(2)+生老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.生我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.例1中的第(1)题,一个分母是a,另一个分母是5a,利用分式的基本性质,只需将第一个分式化成=即可.解:(1)+=+=;生我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x1,另一个分式的分母是1x,我们注意到了1x=(x1),所以要把化成分母为x1的分式,利用分式的基本性质,得=.所以第(2)题的解法如

11、下:(2)+=+=师同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起.生问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为+=+=h.(2)小丽走第一条路所用的时间为h.作差可知=0.所以小丽走第一条路花费的时间少,少用h.应用、升华1.随堂练习第1题计算:(1);(2)+;(3)解:(1)=;(2)+=+=;(3)=.2.补充练习(出示投影片3.3.1 F)计算:+.解:+=1.课时小结师这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大.生我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯

12、同样的错误.生我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.课后作业习题3.4第1、2、3题.活动与探究已知x+=z+=1,求y+的值.过程已知条件实际上是一个方程组,我们可以取其中两个方程x+=1,z+=1,由这两个方程把y、z都用x表示后,再求代数式的值.结果由x+=1,得y=,由z+=1,得z=.所以y+=+=+=1.板书设计3.3.1 分式的加减法(一)分数的加减法分式的加减法同分母分母不变,分子相加减分母不变,分子相加减.异分母转化为同分母转化为同分母做一做:(学生板演)(1)+(2)(3)+例1计算:(1)+(2)+注意:1分数线的括号作用,突出分子是整体.2计算结果要化成最简形式.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服