1、29.2.1 证明的再认识教学目标知识技能目标1进一步探索几何图形的性质,掌握研究几何图形的方法;2进一步了解证明的含义,理解证明的必要性,掌握证明的书写格式;3能证明三角形内角和定理及推论过程性目标通过三角形内角和定理及推论的证明,体会证明的必要性,注意证明的格式,知道每一步推理都必须有依据,证明的表述必须条理清晰教学重点进一步探索几何图形的性质,掌握研究几何图形的方法能证明三角形内角和定理及推论教学难点掌握证明的书写格式教学过程(一)情境导入1任意画一个四边形,分别用度量和剪拼的方法,求出该四边形的内角和的大小你能说说理由吗?2下列图中的线段和线段的长度是否相等?用尺度量结果是否与你感觉一
2、样?(二)归纳总结1探索几何图形的性质时,常常采用看一看,画一画,比一比,量一量,算一算,想一想,猜一猜等方法得出结论,并在实验操作中对结论作出解释,这是研究几何图形性质的一种基本方法但有时视觉上的错觉会误导我们,凭直觉的方法研究几何图形所得出的结论不一定正确,所以我们要学习用逻辑推理的方法(既证明)去探索图形的性质2逻辑推理需要依据,依据包括公理,等式与不等式的有关性质以及等量代换,定理公理:(1)一条直线截两条平行直线所得的同位角相等;(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(3)如果两个三角形的两边及其夹角(或两角及其夹边,或三边)分别对应相等,那么这两个三角
3、形全等;(4)全等三角形的对应边、对应角相等定理:在公理与依据的基础上,用逻辑推理的方法去证明几何图形的有关命题,并将证得的可以作为进一步推理依据的真命题称为定理我们需要将证明的每一步的依据要写在所得到的结论后面(三)实践与探索例1用逻辑推理的方法证明三角形的内角和是180度已知:ABC.求证:A+B+C=180分析回忆以前将三个内角拼在一起,发现三角形的三个内角的和等于180,因此要设法将三个内角移在一个平角上,任作一个三角形ABC,延长AB到D,得平角ABD,过点B作BEAC,由平行线的性质把三个内角拼到点B处得:三角形内角和定理:三角形的内角和等于180度说明 (1)为了证明的需要在原来
4、的图中添画的线叫辅助线,辅助线常画成虚线;(2)该定理的推理形式:因为 ABC,所以A+B+C=180(三角形内角和定理);(3)该定理可以作为进一步推理的依据利用三角形内角和定理,请同学们用逻辑推理的方法来说明(a)四边形内角和等于360(b)n边形的内角和等于(n-2)180小结:(1)探索几何图形性质的两种方法不是孤立的,实践为我们作出猜想提供了材料,推理证明为猜想的真实性提供保证;(2)逻辑推理的依据有已知、定义、定理、公理、等式的性质、不等式的性质及等量代换等;(3)注意证明的格式,每一步推理都必须有依据,证明的表述必须条理清晰29.2.2 证明的再认识(2)教学目标知识技能目标1掌
5、握推理证明的方法与步骤,培养言之有据的思维习惯;2用所学过的公理,定理,定义进行逻辑推理过程性目标在推理过程中体会公理与定理,定理与定理之间的逻辑关系,熟练掌握证明的书写格式教学重点通过画图得出二次函数特点教学难点识图能力的培养教学过程(一)情境导入我们已经用逻辑推理的方法证明了三角形的内角和等于180度,同学们能否以这个定理为依据,来证明三角形的外角性质?哪位同学来说说三角形的外角具有什么性质?求证:三角形的一个外角等于和它不相邻的两个内角的和已知:如图,CBD是ABC的一个外角求证:CBDA+C(二)探究归纳我们已经学习了许多图形的性质,有些就是逻辑推理的最原始的依据公理,还有一些是在公理的基础上用逻辑推理的方法去证明的,如:全等三角形的判定公理:边角边、角边角、边边边除这些方法以外,同学们还有什么方法判断三角形全等?(角角边)我们一起来证明命题:有两个角及其中一个角的对边分别相等的两个三角形全等已知:ABC和 ABC中,AA,BB,BCBC求证:ABCABC(三)实践与探索 (四)交流反思1.有些图形的性质可以通过观察和实验得到的,但仅仅通过观察和实验是不够的,必须要通过证明得到;2.在推理过程中,不能只根据问题的某种相似性,生搬硬套,要正确运用定理公理等依据去证明几何图形的有关命题