ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:45.50KB ,
资源ID:7635573      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7635573.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(八年级数学下第十七章17.2实际问题与反比例函数(3)教案新人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下第十七章17.2实际问题与反比例函数(3)教案新人教版.doc

1、17.2 实际问题与反比例函数(三) 三维目标 一、知识与技能 1.能灵活列反比例函数表达式解决一些实际问题. 2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题. 二、过程与方法 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题. 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力. 三、情感态度与价值观 1.积极参与交流,并积极发表意见. 2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具. 教学重点

2、掌握从物理问题中建构反比例函数模型. 教学难点 从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想. 教具准备 多媒体课件. 教学过程 一、创设问题情境,引入新课 活动1 问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一. [例1]在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

3、1)求I与R之间的函数关系式; (2)当电流I=0.5时,求电阻R的值. 设计意图: 运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力. 师生行为: 可由学生独立思考,领会反比例函数在物理学中的综合应用. 教师应给“学困生”一点物理学知识的引导. 师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值. 生:(1)解:设I= ∵R=5,I=2,于是 2=,所以k=10,∴I=. (2)当I=0.5时,R==2

4、0(欧姆). 师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢? 生:这是古希腊科学家阿基米德的名言. 师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为; 阻力×阻力臂=动力×动力臂(如下图) 下面我们就来看一例子. 二、讲授新课 活动2 [例3]小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米. (1)动力F与动力臂l有怎样

5、的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力? (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少? 设计意图: 物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用. 师生行为: 先由学生根据“杠杆定律”解决上述问题. 教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系. 教师在此活动中应重点关注: ①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

6、②学生能否面对困难,认真思考,寻找解题的途径; ③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣. 师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题. 生:解:(1)根据“杠杆定律”有 F·l=1200×0.5.得F= 当l=1.5时,F==400. 因此,撬动石头至少需要400牛顿的力. (2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有 Fl=600, l=. 当F=400×=200时, l==3.

7、3-1.5=1.5(米) 因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米. 生:也可用不等式来解,如下: Fl=600,F=. 而F≤400×=200时. ≤200 l≥3. 所以l-1.5≥3-1.5=1.5. 即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米. 生:还可由函数图象,利用反比例函数的性质求出. 师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题: 用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

8、生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=(k为常数且k>0) 根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力. 师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用. 活动3 问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)

9、若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少? 设计意图: 在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题. 师生行为: 由学生先独立思考,然后小组内讨论完成. 教师应给予“学困生”以一定的帮助. 生:解:(1)∵y与x-0.4成反比例, ∴设y=(k≠0). 把x=0.65,y=0.8代入y=,得 =0.8. 解得k=0.2, ∴y

10、= ∴y与x之间的函数关系为y= (2)根据题意,本年度电力部门的纯收入为 (0.6-0.3)(1+y)=0.3(1+)=0.3(1+)=0.3×2=0.6(亿元) 答:本年度的纯收人为0.6亿元, 师生共析: (1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值; (2)纯收入=总收入-总成本. 三、巩固提高 活动4 一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数

11、请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值. 设计意图: 进一步体现物理和反比例函数的关系. 师生行为 由学生独立完成,教师讲评. 师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系. 生:V和ρ的反比例函数关系为:V=. 生:当ρ=1.1kg/m3根据V=,得 V===900(m3). 所以当密度ρ=1.1 kg/m3时二氧化碳气体的气体为900m3. 四、课时小结 活动5 你对本节内容有哪些认识?重点掌握利用函数

12、关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得. 设计意图: 这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性. 师生行为: 学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流. 教师组织学生小结. 反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理

13、量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系. 板书设计 17.2 实际问题与反比例函数(三) 1. 2.用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力? 设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理, F·l=k 即F=(k>0且k为常数). 由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小. 活动与探究 学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一

14、边x之间的函数关系式如下图所示. (1)绿化带面积是多少?你能写出这一函数表达式吗? (2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内? x(m) 10 20 30 40 y(m) 过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值. 结果:(1)绿化带面积为10×40=400(m2) 设该反比例函数的表达式为y=, ∵图象经过点A(40,10)把x=40,y=10代入,得10=,解得,k=400. ∴函数表达式为y=. (2)把x=10,20,30,40代入表达式中,求得y分别为40,20,,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服