ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:365.50KB ,
资源ID:7635469      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7635469.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(甘肃省张掖市临泽县第二中学八年级数学上册 6.4 确定一次函数表达式教学设计 (新版)北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

甘肃省张掖市临泽县第二中学八年级数学上册 6.4 确定一次函数表达式教学设计 (新版)北师大版.doc

1、 6.4 确定一次函数表达式教学设计知识与技能:了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题过程与方法:经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;情感、态度与价值观:经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维三、教学重点:根据所给信息,利用待定系数法确定一次函数的表达式四、教学难点:在实际问题情景中寻找条件,确定一次函数的表达式五、教法学法1教学方法:启发引导2课前准备教具:教材、课件、电脑学具:

2、教材、练习本六、教学过程第一环节:复习引入内容:提问:(1)什么是一次函数? (2)一次函数的图象是什么? (3)一次函数具有什么性质?意图:学生回顾一次函数相关知识,温故而知新第二环节:初步探究内容1:展示实际情境提供两个问题情境,供老师选用实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示(1)写出v与t之间的关系式;x/s202525y/m100甲乙(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可实际情境二:假定甲、乙二人在

3、一项赛跑中路程与时间的关系如图所示 (1)这是一次多少米的赛跑? (2)甲、乙二人谁先到达终点? (3)甲、乙二人的速度分别是多少? (4)求甲、乙二人与的函数关系式意图:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法内容2:想一想:确定正比例函数的表

4、达式需要几个条件?确定一次函数的表达式呢?意图:在实践的基础上学生加以归纳总结。这个问题涉及到数学对象的一个本质概念基本量由于一次函数有两个基本量、,所以需要两个条件来确定第三环节:深入探究内容1:例1 在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度解:设,根据题意,得14.5=, 16=3+,将代入,得所以在弹性限度内,当时,(厘米)即物体的质量为千克时,弹簧长度为厘米意图:引例中设置的是利用函数图象求函数表达式,这个

5、例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解教学注意事项:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到与间的关系式对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同内容2:想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤求函数表达式的步骤有:1设一次函数表达式2根据已

6、知条件列出有关方程3解方程4把求出的k,b值代回到表达式中即可意图:对求一次函数表达式方法的归纳和提升。在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法第四环节:反馈练习内容:1若一次函数的图象经过A(1,1),则 ,该函数图象经过点B(1, )和点C( ,0)2如图,直线是一次函数的图象,填空: (1) , ;(2)当时, ;(3)当时, 3已知直线与直线平行,且与y轴交于点(0,2),求直线的表达式答案: ;意图:三个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程效果:三个不同类型的问题由浅入深,学生能

7、从不同角度掌握求一次函数的方法对于问题3,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯第五环节:课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出,的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4把k,b代回表达式中,写出表达式2本节课用到的主要的数学思想方法:数形结合、方程的

8、思想意图:引导学生小结本课的知识及数学方法,使知识系统化第六环节:作业布置习题6.5:1,2,4意图:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大基础训练:1一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0时,y=_,当x=_时,y=0;(2)k=_,b=_;(3)当x=5时,y=_,当y=30时,x=_.2油箱中存油20升,油从油箱中均匀流出,流速为02升分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( ) A B C D提高训练:3某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y元是行李

9、质量x(千克)的一次函数,其图象如下图所示(1)写出y与x之间的函数关系式;(2)旅客最多可免费携带多少千克行李?知识拓展:已知直线经过点()且与坐标轴围成的三角形的面积为,求该直线的表达式如图,某气象中心观测一场沙尘暴从开始到结束的全过程开始时风速平均每小时增加2km/h,4h后,沙尘暴经过开阔的荒漠地,风速变为平均每小时增加4km/h一段时间,风速保持不变当沙尘暴遇到绿色植被区时,其风速平均每小时减少1km/h,最终停止结合图象,回答下列问题:(1) 在y轴括号内填入相应的数值;(2) 沙尘暴从发生到结束,共经过多少小时?(3) 求出当,风速y(km/h)与时间x(小时)之间的函数关系式

10、意图:教学设计都是针对特定的学生群体,有一定的针对性例如从整节课的设计来看,可能对学习能力较强的学生关注不够因此这里提供一些分层训练,以供针对各种情况调整教学加以选择既可课内完成也可课外作业效果:利用分层能更加全面的照顾到各种层次的学生,也更能调动学生的学习热情,另外题目见得多方法的积累也更全面和完善,不同的题目还有着不同的教学效果,教师应根据学生出现的情况适时地进行教学调整我教学时选择了知识拓展的第题,结果学生在做此题时出现以下情况:1、不知画图分析;2、不明确与坐标轴围成的三角形是哪一个;3、在把线段长转化为点的坐标时出错;4、出现最多的问题是漏解,只考虑一种情况根据教学情况来看此题可让学生先独立思考,故意让学生出现以上错误,再进行纠错教学效果更好在学生已掌握一次函数表达式的求法之后设置这个题目,目的是为了进一步培养学生数形结合的能力,综合解决问题的能力,以及通过此题的分析有两种情况教育学生考虑分析问题要严谨答案:();();().();()(),;()57小时;()七、板书设计一次函数图象的表达式方法步骤: 例题 练习

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服