ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:461KB ,
资源ID:7635381      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7635381.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(新课标九年级数学竞赛辅导讲座 第七讲 化归—解方程组的基本思想.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新课标九年级数学竞赛辅导讲座 第七讲 化归—解方程组的基本思想.doc

1、第七讲 化归—解方程组的基本思想 初中阶段已学过的方程组有:二元一次方程组、三元一次方程组、二元二次方程组. 尽管具体到每类方程组的解法不全相同,但纵有千变万化,而万变不离其宗: 化归是解方程组的基本思想,降次与消元是化归的主要途径,因式分解、换元是降次的常用方法,代人法、加减法是消元的两种主要手段. 解一些特殊方程组(如未知数系数较大,未知数个数较多等),需要在整体分析方程组特点基础上,灵活运用一些技巧与方法,常用的技巧与方法有迭加、迭乘、换元、配方、取倒等. 注:转化与化归是解方程(组)的基本思想,常见形式有: 分式方程整式化 无理方程有理化 高次方

2、程低次化 多元方程一元化 通过恰当的转化,化归目的明确,复杂的方程(组)就会变为我们熟悉的、简单的方程(组). 【例题求解】 【例1】已知正实数、、满足,则= . 思路点拨 由想到从分解因式入手,还需整体考虑. 【例2】方程组的正整数解的组数是( ) A.4 B.3 C 2 D.1 思路点拨 直接消元降次解三元二次方程组较困难,从分析常数项的特征入手. 【例

3、3】 解下列方程组: (1) (2) (3) 思路点拨 对于(1),先求出整体、的值,对于(2),视、为整体,可得到、的值;对于(3)设,,用换元法解. 【例4】 已知、、三数满足方程组,试求方程的根. 思路点拨 先构造以、为两根的一元二次方程,从判别式入

4、手,突破的值. 注:方程与方程组在一定的条件下可相互转化,借助配方法、利用非负数性质是促使转化的常用工具,一个含多元的方程,往往蕴含着方程组. 【例5】已知方程组有两个实数解为和且,,设, (1)求的取值范围;(2)试用关于的代数式表示出; (3)是否存在的的值?若存在,就求出所有这样的的值;若不存在,请说明理由. 思路点拨 代人消元,得到关于的一元二次方程,综合运用根的判别式、韦达定理等知识求解,解题中注意隐含条件的制约,方能准确求出的取值范

5、围. 注:方程组解的性质、个数的探讨问题,往往转化为一元二次方程根的个数、性质的讨论,但这种转化不一定是等价的,注意隐含条件的制约,如本例中,则,这就是一个隐含条件. 学历训练 1.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是,试写出符合要求的方程组 (只要填写一个即可). 2.若方程组有两组相同的实数解,则的取值是 . 3.实数、、满足,则的值为 . 4.

6、已知、、2是正整数,并且满足,那么的值等于 . 5.已知,,则的值为( ) A.2001 B.2002 C. 2003 D.2004 6.已知,,则=( ) A.337 B.17 C.97 D.1 7.解下列方程组: (1) (2)

7、 (3) 8.已知方程组有两个实数解和,且,求的值. 9.方程组的解是 . 10.已知实数,是方程组的解,则+= . 11.已知,且,则是的值为 .

8、 12.已知方程组的两组解是()与(),则的值是 . 13.已知,,则的值是( ) A.4 B.2 C.一2 D.0 14.设,为实数,且满足,则=( ) A.1 B.一1 C. 2 D.一2 15.解下列方程组: (1) (2) (3) 16.已知方程组的两个解为和,且,是两个不相等的实数,若. (1)求的值; (2)不解方程组判断方程组的两个解能否都是正数?为什么? 17.已知、是方程的两个实根,解方程组 18.已知、为实数,且满足,,求的值. 参考答案

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服