1、19.2平行四边形(1)主备人: 时间地点召集人课题19.2平行四边形课时第 1 课时(总第 1 课时)科任教师授课时间教学目标知识与能力:探索并掌握平行四边形的有关概念和平行四边形对边相等、对角相等的特征。过程与方法:经历探索平行四边形的有关概念和特征的过程,在有关活动中发展学生的探索意识和合作交流的习惯。情感态度价值观:培养学生严谨的思维意识,体会几何的应用价值 。重、难点重点:平行四边形的概念和特征; 难点:探索和掌握平行四边形的特征。教学过程一、导入新课、揭示目标(2分钟左右)1教学目标(1)经历探索平行四边形的有关概念和特征的过程,在有关活动中发展学生的探索意识和合作交流的习惯;(2
2、)探索平行四边形对边相等、对角相等的特征.二、学生自学,质疑问难(10分钟左右)自学提纲:阅读课本内容,完成以下任务:(1)观察图,猜想它的边、角之间具有什么关系?并度量验证.(2)思考是否所有平行四边形都具有(1)中的关系?请说明.(3)体会例1示范的格式,思考每步的依据.三、合作探究,解决疑难(15分钟左右)1解决自学提纲中的问题。平行四边的定义:两组对边分别平行的四边形叫做平行四边形。判定:ABCD, ADBC ,四边形ABCD是平行四边形。性质:四边形ABCD是平行四边形 ,ABCD, ADBC。平行四边形用“ ”符号,你还能发现平行四边形中,有哪些等量关系?如何证明?已知:如图,四边
3、形ABCD是平行四边形.求证:(1)AB=CD,AD=BC;(2)A=C, B=D。 性质1:平行四边形的对边相等。 性质2:平行四边形的对角相等。例1已知:如图,在ABCD中,BE平分ABC交AD于点E。(1)如果AE=2,求CD的长;(2) 如果AEB=40,求C的度数。练一练1.在ABCD中,已知A=50,求B,C,D的度数2.在ABCD中,AB= a,BC=b ,求这个平行四边形的周长3.在ABCD中,A的平分线AE交CD于E,AB=15,AD=10,则EC的长为.四、巩固新知,当堂训练(15分钟)1.如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个
4、四边形.请问A与C相等吗?2.在ABCD中,若A+C=1000, 则A=_,D=_.3.已知,ABCD中,A: B2:3,求C、D的度数.4.在等腰ABC中,AB=AC,AB=5cm.D为BC边上任意一点,DFAC,DEAB. 求AEDF的周长.五、课堂小结这节课你有什么收获?1.平行四边形的定义两组对边分别平行 平行四边形.平行四边形的性质: 对角相等邻角互补对边平行对边相等边角六、布置作业讨论补充记录板书设计 教 学 反 思 19.2平行四边形(2)主备人: 时间地点召集人课题19.2平行四边形课时第 2 课时(总第 2 课时)科任教师授课时间教学目标知识与能力:掌握平行四边形的两个推论。
5、过程与方法:通过课堂合作学习让学生自己完成两个推论,培养学生的探究能力。情感态度价值观: 培养学生勇于探索的思想意识,体会几何知识的实际应用价值。重、难点重点:平行四边形的两个推论;难点:利用平行四边形的性质解决简单的几何问题。教学过程一、导入新课、揭示目标(2分钟左右)教学目标1.掌握平行四边形的两个推论。2.会用平行四边形的性质解决简单的几何问题。二、学生自学,质疑问难(10分钟左右)自学提纲:阅读课本内容,完成下列各题:1.请同学们根据以下描述作图步骤一:请任意作两条平行线。步骤二:请在其中一条直线上任找A、B两点。步骤三:过A、B两点作两条平行线,与另外一条直线分别交于C、D两点。能得
6、到什么结论?2.有两条直线平行,你能画图表示出一条直线上的点到另一条直线的距离吗?那么这一条直线上所有的点到另一条直线的距离呢?他们有什么关系?3.解决例题:已知,过ABC的三个顶点,分别作对边的平行线,这三条直线两两相交,得到 ABC.求证: ABC的顶点分别是 ABC三边的中点。三、合作探究,解决疑难(15分钟左右)1.解决自学提纲中的问题,通过课堂合作学习让学生自己完成两个推论,教师对解题思路作适当引导。例1 已知,过ABC的三个顶点,分别作对边的平行线,这三条直线两两相交,得到 ABC.求证: ABC的顶点分别是 ABC三边的中点。思路分析:解题的关键是找出解题的切入点,利用平行四边形
7、的性质。例2如图,ABCD,DFBE,AECF ,图中有几个平行四边形?将它们表示出来,并说明理由。变式:学校买了4棵树,准备栽在花园里,已经栽了三棵(如图),现ABC在学校希望这四棵树能够组成一个平行四边形,你觉得第四棵树应该栽在哪里呢?请你在图中画出可能的位置CBDEFA例3 如图,在平行四边形ABCD中,BCD的平分线交AB于点E,交DA的延长线于点F,且AE=5cm,EB=5cm,求平行四边形ABCD的周长四、巩固新知,当堂训练(15分钟)1如图,在平行四边形ABCD中,E、F分别是DC、AB上的点,且DE=BF试说明AE=CF、CDABFE2、已知直线a b,夹在a、b之间的一条线段
8、AB长 ,AB与a的夹角为1500,求a与b之间的距离.五、课堂小结请你理一理:我们在本节课学习了哪些知识?六、课堂作业,拓展延伸(3分钟) 选做:如图,在平行四边形ABCD中,BCD的平分线CE交AD于点E,ABC的平分线BG交CE于点F,交AD于点G试说明AE=DG课外作业: 学校有一个三角形的花坛,顶点处各有一个石柱,现在想把花坛的面积扩大一倍,而不移动石柱,请你设计一个改建方案。讨论补充记录板书设计 教 学 反 思 19.2平行四边形(3)主备人: 时间地点召集人课题19.2平行四边形课时第 3 课时(总第 3 课时)科任教师授课时间教学目标知识与能力:探索平行四边形的对角线互相平分的
9、性质,会应用平行四边形的三个性质。过程与方法:经历探索平行四边形的性质的过程,发展学生的推理意识,提高应用能力。情感态度价值观:培养学生严谨的推理能力,体会平行四边形的应用价值。重、难点理解和掌握平行四边形的对角线互相平分的性质。教学过程一、导入新课、揭示目标(2分钟左右)1.探索平行四边形的对角线互相平分的性质,会应用平行四边形的三个性质。2.经历探索平行四边形的性质的过程,发展学生的推理意识,提高应用能力。3.培养学生严谨的推理能力,体会平行四边形的应用价值。二、学生自学,质疑问难(10分钟左右)自学提纲:阅读课本,完成下列各题。1平行四边形ABCD 的两条对角线AC、BD相交于点O.(1
10、) 有哪些三角形是全等的?有哪些线段是相等的?(2) 能设法验证你的结论吗?2由上题你又能得出平行四边形的哪些性质?3解决例题 已知,在平行四边形ABCD中,对角线AC,BD相交于点O,ABAC,AB=3,AD=5,求BD的长。三、合作探究,解决疑难(15分钟左右)1解决自学提纲中的问题。学生合作学习,相互讨论自己的思维,并交流不同的验证思路。师生共同归纳平行四边形的性质3:平行四边形的对角线互相平分。几何语言:平行四边形 ABCD 的两条对角线AC、BD相交于点O,AOOCAC, BOODBD.例1 已知,在平行四边形ABCD中,对角线AC,BD相交于点O,ABAC,AB=3,AD=5,求B
11、D的长.思路点拨:利用平行四边形的性质和勾股定理来求,让学生学会综合分析法,严格书写格式。例2 在平行四边形ABCD中,对角线AC,BD相交于点O,EF是经过点O的一条直线,分别交 AD,BC于点E,F,求证:OE=OF.四、巩固新知,当堂训练(15分钟)1在平行四边形ABCD中,EF过对角线的交点O,若AB=4,BC=7,OE=3,则四边形EFCD的周长是( ). A14 B. 11 C. 10 D. 172. 已知平行四边形ABCD的对角线AC、BD相交于点O,AC =16,BD =12,BC =10,则平行四边形ABCD 的周长是_,平行四边形 ABCD的面积是_.3.在平行四边形ABC
12、D中,A:B:C:D的值可能是().A1:2:3:4 B1:2:2:1C1:1:2:2 D2:1:2:14.平行四边形的一边长为5cm,则它的对角线可能是( ).A4cm和6cm B.4cm和14cmC.4cm和8cm D.10和2 5.在平行四边形ABCD中,AC=10cm,BD=24cm,AD=15cm,对角线相交于点O,求OBC的周长。思考题1.你能画一条直线将一个平行四边形分成两个形状和大小完全相同的两部分吗?2.试一试,这样的直线你能画几条?五、课堂小结学习了本节课你有哪些收获?六、课堂作业,拓展延伸(3分钟)课外作业:1.在平行四边形ABCD中,对角线AC与BD互相垂直,那么这个平
13、行四边形的邻边有什么关系?为什么?2.平行四边形的三个性质定理的逆命题是什么?它们都是真命题吗?由这三个性质定理还可以构造出哪些真命题?讨论补充记录学生自学。对不会的问题要做好批注或随笔,作为合作探究的问题进行合作探究。教师检查学情,不指导、不提问、不干扰。板书设计 教 学 反 思 19.2平行四边形(4)主备人 时间地点召集人课题19.2平行四边形课时第 4 课时 (总第 4 课时)科任教师授课时间教学目标知识与能力:掌握用一组对边平行且相等来判定平行四边形的方法并通过定理、习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.过程与方法:通过平行四边形的性质与判
14、定的应用,启迪学生的思维,提高分析问题的能力情感态度价值观:培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵. 重难点平行四边形判定方法及其应用教学过程一、导入新课、揭示目标(2分钟左右)1复习回顾定义:有两组对边分别平行的四边形叫做平行四边形.性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.2出示教学目标掌握用一组对边平行且相等来判定平行四边形的方法并通过定理、习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.二、学生自学,质疑问难(10分钟左右)出示自学提纲。阅读课本内容,完成下列各题: 1把线段AB平移,所形成
15、的四边形是什么四边形?2一组对边平行且相等的四边形是平行四边形吗?如何证明?3两组对边分别相等的四边形是平行四边形吗?.三、合作探究,解决疑难(15分钟左右)1解决自学提纲中的问题。已知:四边形ABCD中,AB=CD,ABCD,求证:四边形ABCD是平行四边形.学生完成证明过程符号语言:AB CD四边形ABCD是平行四边形2例1 已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF 分析:要证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单 证明: 四边形ABCD是平行四边形, ADCB,AD=CD E、F分别是AD
16、、BC的中点, DEBF,且DE=AD,BF=BC DE=BF 四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形) BE=DF 此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路例2 已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形分析:因为BEAC于E,DFAC于F,所以BEDF需再证明BE=DF,这需要证明ABE与CDF全等,由角角边即可 证明: 四边形ABCD
17、是平行四边形, AB=CD,且ABCD BAE=DCF BEAC于E,DFAC于F, BEDF,且BEA=DFC=90 ABECDF (AAS) BE=DF 四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形)探究:有一天,李老师的儿子从幼儿园放学来到办公室,看到李老师办公桌上一块平行四边形纸片,于是就拿起笔来画画,画了一会儿,对自已的作品不满意撕去了一些,巧的是刚好从A、C两个顶点撕开。你只有尺规,你能帮它补好吗?你能得到什么结论?平行四边形的判定定理2 两组对边分别相等的四边形是平行四边形.符号语言:AB=CD,AD=BC四边形ABCD是平行四边形四、巩固新知,当堂训练(1
18、5分钟)1在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)ABCD,AD=BC (B)A=B,C=D (C)AB=CD,AD=BC (D)AB=AD,CB=CD2已知:如图,ACED,点B在AC上,且AB=ED=BC, 找出图中的平行四边形,并说明理由五、课堂小结你还有哪些收获与大家分享?六、课堂作业,拓展延伸(3分钟)讨论补充记录板书设计 教 学 反 思 19.2平行四边形(5)主备人 时间地点召集人课题19.2平行四边形课时第5 课时(总第 5 课时)科任教师授课时间教学目标知识与能力:1.理解并掌握用对角线来判定平行四边形的方法 2会综合运用平行四边形的判定方法和性质
19、来解决问题过程与方法:经历平行四边形判定条件的探索过程,发展学生的推理意识和表述能力.情感态度价值观:培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵. 重难点重点:理解和掌握平行四边形的判定定理. 难点:几何推理方法的应用.教学过程一、导入新课、揭示目标(2分钟左右)教学目标:知识目标:1.理解并掌握用对角线来判定平行四边形的方法 2会综合运用平行四边形的判定方法和性质来解决问题能力目标:经历平行四边形判定条件的探索过程,发展学生的推理意识和表述能力.情感目标:培养学生合情推理能力,以及严谨的书写表达.二、学生自学,质疑问难(10分钟左右)自学提纲阅读课本内容解决下列问题:1
20、.画2条相交直线a,b,设交点为O ,在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB,BC,CD,DA。 所画的四边形ABCD是平行四边形吗?2.判断四边形是平行四边形的条件是什么?如何证明?3.自学例5,体会例5的解题格式三、合作探究,解决疑难(15分钟左右)解决自学提纲中的问题。操作 1.画2条相交直线a,b,设交点为O ,2.在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB,BC,CD,DA,思考:所画的四边形ABCD是平行四边形吗?判断四边形是平行四边形的条件:两条对角线互相平分的四边形是平行四边形。例1 已知:如图,E、F是平行四边形ABCD对角线AC上两点
21、,且AECF.求证:四边形BFDE是平行四边形.分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E、F在对角线上,显然用对角线互相平分来判定.证明:连结BD交AC于O. 四边形ABCD是平行四边形, AE=CF,OE=AO-AE=CO-CF=OF,四边形BFDE是平行四边形.(对角线互相平分的四边形是平行四边形)这道题,还可以利用用对边相等或平行来判定平行四边形,相比之下使用对角线较简便.思考: 1.若BEDF,四边形BFDE是平行四边形吗?2.若BEAC于E , DFAC于F,四边形BFDE是平行四边形吗?3.若BE=DF,四边形BFDE是平行四边形吗?例2 已知:
22、四边形ABCD, A=C,B=D,求证:四边形ABCD是平行四边形.平行四边形的判定定理4: 两组对角分别相等的四边形是平行四边形。符号语言: A=C, B=D (已知), 四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形。) 例3 如图:已知在ABC中,AB=AC,D为BC上任意一点,DEAC交AB于E,DFAB交AC于F,求证:DE+DF=AC.四、巩固新知,当堂训练(15分钟)1.若AC=10cm,BD=8cm,那么当AO=_ _cm,DO=_ _cm时,四边形ABCD为平行四边形2已知:如图,ABCD中,点E、F分别在CD、AB上,DFBE,EF交BD于点O求证:EO=
23、OF3.已知:如图,在平行四边形ABCD中, E,F分别是AB,CD上的两点,且AE=CF,求证:BD、EF互相平分. 五、课堂小结平行四边形的判定方法有哪些?六、课堂作业,拓展延伸(3分钟)讨论补充记录板书设计 教 学 反 思 19.2平行四边形(6)主备人: 时间地点召集人课题19.2平行四边形课时第6 课时(总第 6 课时)科任教师授课时间教学目标知识与能力:理解三角形中位线的概念,掌握它的性质能较熟练地应用三角形中位线性质进行有关的证明和计算过程与方法:经历探索、猜想、证明的过程,进一步发展推理论证能力感悟几何学的推理方法.情感态度价值观:培养学生合情推理意识,形成几何思维分析思路,体
24、会几何学在日常生活中的应用价值.重难点重点:掌握和运用三角形中位线的性质难点:三角形中位线性质的证明(辅助线的添加方法)教学过程一、 导入新课、揭示目标(2分钟左右)1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算二、学生自学,质疑问难(10分钟左右)自学提纲:阅读课本内容,思考下列问题:1.什么是三角形的中位线?2.三角形的中位线定理的内容是什么?如何证明?3.命题的证明步骤有哪些?如何证明例7?三、合作探究,解决疑难解决自学提纲中的问题。三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:一个三角形的中位线共有几条?三角形的
25、中位线与中线有什么区别? 三角形的中位线与第三边有怎样的关系? 三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半例 如图,点D、E、分别为ABC边AB、AC的中点,求证:DEBC且DE=BC 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形 方法1:如图,延长DE到F,使EF=DE,连接CF,由ADECFE,可得ADFC,且AD=FC,因此有BDFC,BD=FC,所以四边形BCFD是平行四边形所以DFBC,DF=
26、BC,因为DE=DF,所以DEBC且DE=BC(也可以过点C作CFAB交DE的延长线于F点,证明方法与上面大体相同)方法2:如图,延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形所以ADFC,且AD=FC因为AD=BD,所以BDFC,且BD=FC所以四边形BDFC是平行四边形所以DFBC,且DF=BC,因为DE=DF,所以DEBC且DE=BC例1 求证:经过三角形一边中点与另一边平行的直线必平分第三边.例2 已知:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点求证:四边形EFGH是平行四边形分析:因为已知点E、F、G、H
27、分别是四边的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证证明:连结AC,DAC中, AH=HD,CG=GD, HGAC,HG=AC(三角形中位线性质)同理EFAC,EF=AC HGEF,HG=EF 四边形EFGH是平行四边形此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形四、巩固新知,当堂训练(15分钟)1如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是 .2已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长3如图,ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= _cm;(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想五、课堂小结:这节课你有何收获?六、课堂作业,拓展延伸(3分钟)讨论补充记录合作解决学生自主发现的问题。板书设计教 学 反 思
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100