ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:576KB ,
资源ID:7634375      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7634375.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(辽宁省沈阳市第四十五中学九年级数学上册 4.4 探索三角形相似的条件(第四课时)教案 (新版)北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

辽宁省沈阳市第四十五中学九年级数学上册 4.4 探索三角形相似的条件(第四课时)教案 (新版)北师大版.doc

1、4.4 探索三角形相似的条件一、学情分析学生在学习了本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质;也在之前的学习中掌握了一些基本的尺规作图方法.二、教材分析教学目标:1、 知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点;2、 通过找一条线段的黄金分割点,培养学生理解与动手能力.3、 理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系.教学重点:了解黄金分割的意义并能运用.教学难点:找出黄金分割点和作黄金矩形.三、教学过程本节课设计了六个环节:第一个环节:情境引入;第二个环节:导入新知;第三个环节

2、:操作感知;第四个环节:练习拓展;第五个环节:课堂小结;第六个环节:布置作业.第一环节 情境引入活动内容:展示课件,欣赏图片.第一组:建筑中的黄金分割文明古国埃及的金字塔,它的每面的边长与高之比接近于0.618第二组:摄影中的黄金分割第三组:人体与黄金分割舞蹈演员的腿和身材的比例也近似于0.618的比值,看上去会感到和谐、平衡、舒适,有一种美的感觉活动目的:通过建筑、摄影、艺术上的实例初步感受黄金分割,体会黄金分割在现实生活中的广泛应用和文化价值.第二环节 导入新知活动内容:在线段AB上,点C把线段分成两条线段AC和BC,如果,那么称线段AB被点C分割,点C叫做线段AB的黄金分割点,AC与AB

3、的比叫黄金比.其中.即.教师讲解,学生观察、思考、交流.注意事项:学生通过观察、思考、交流,教师引导、回答问题。因为学生尚未学习一元二次方程,所以无法理解比值为的理由,只需让学生了解这一事实即可.第三环节 操作感知活动内容:1.提出问题:如何找到一条线段的黄金分割点?多数学生尝试画出1cm、2cm的线段,通过计算找到黄金分割点大概的位置.可以用这种方法大概的找到当线段长为a时黄金分割点的位置,但不能精确地找到.2.展示课件,学生跟做.如果已知线段AB,按照如下方法画图: (1)经过点B作BDAB,使;(2)连接AD,在DA上截取DE=DB;(3)在AB上截取AC=AE,则点C为线段AB的黄金分

4、割点.3.提出问题:为什么点C为线段AB的黄金分割点?方法提示:设AB=2,分别求出AC和BC,并计算 和 ,或计算AC2和BCAB.活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识.注意事项:教师操作,学生动手、独立思考,再与同伴交流完成。由于学生所学过的尺规作图方法有限,作图工具可以用三角尺和刻度尺.第四环节 练习与拓展活动内容:练习1.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20m,试计算主持人应走到离A点至少多少米处是比较得体的位置?(结果精确到0.1m).练习2.人体下半身(即脚底到肚脐的长度)与身高的比越接近0.618

5、越给人以美感,遗憾的是即使是身材修长的芭蕾舞演员也达不到如此完美.某女士身高1.68m,下半身1.02m,她应选择多高的高跟鞋看起来更美丽?(精确到1cm)练习3.古希腊时的巴台农神庙,将图中的虚线表示的矩形,画成如图中的矩形ABCD,以矩形ABCD的宽为边在其内部作正方形AEFD,那么,我们可以惊奇的发现提出问题:点E是AB的黄金分割点吗?矩形ABCD宽与长的比是黄金比吗?观看多媒体演示的内容,观察与思考、交流、讨论、解决问题.问题解决:由,可以得到 即.所以点E是AB的黄金分割点.由证明可知,矩形ABCD的宽与长的比是黄金比.拓展练习:请用尺规作一个黄金矩形.练习4.采用如下方法也可以得到

6、黄金分割点.如图,设AB是已知的线段,在AB上作正方形ABCD,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H就是AB的黄金分割点。任意作一条线段,用上述方法作出这条线段的黄金分割点,你能说说这种作法的道理吗?观看多媒体演示的内容,观察与思考、交流、讨论,解决问题.问题解决:设AB=2,那么在,点H是AB的黄金分割点活动目的:前3个练习与本节课第一环节相呼应,在于展示黄金分割在人类生活中的作用,提高解题问题的能力.其中练习3还运用比例变形的一些技巧,体会比例基本性质的重要性.练习4在于向学生介绍另一种可以作黄金分割点的方法,同时进一步巩固黄金分割点的

7、认识.注意事项:教师充分引导学生观察、思考、交流、讨论、解决问题。第五环节 课堂小结活动内容:1.什么叫做黄金分割?黄金比是多少?2.一条线段有几个黄金分割点?3.如何用尺规作线段的黄金分割点和黄金矩形?4.如何说明一个点是一条线段的黄金分割点?活动目的:鼓励学生结合本节课的学习过程,自觉总结,并自觉地应用到现实之中,逐步形成正确的数学观,培养学生的审美意识。注意事项:教师鼓励学生畅所欲言自己的感想和收获。第六环节 布置作业必做作业:习题4.81、2选做作业:习题4.84四、教学反思1.教学设计注重揭示数学的现实意义,学习黄金分割不仅是实现线段比例的要求,更是体现了数学的现实意义,它体现了数学与建筑、摄影、经济等各方面的联系密切,使学生认识到数学不是孤立的、干巴巴的数学,它是生活的一部分。2.体会数形结合的思想。通过对黄金分割的尺规作图,了解黄金分割作图方法的原理,体会到数形结合的思想。3.在整个教学过程中,教师应积极的启发引导,尽可能多的把时间留给学生动手、动脑和交流。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服