1、你今年几岁了 教学设计(第一课时)教学设计思想本节是第一节你今年几岁了第一课时,以游戏、小组讨论的形式导入建立方程模型解决实际问题的方法,进而以人普查、小树长高、足球场等实例,让学生自主参与、互相交流、议一议的方式列出方程,归纳引出一元一次方程的概念,进而找到解决实际问题的途径,为第二课时打下伏笔本堂课通过学生的活动掌握知识,体现学生的主体活动,增强课堂上民主意识的体现教学目标知识与技能1能说出方程、一元一次方程、方程的解等基本概念2能准确判断一元一次方程和它的解3提高观察、分析、归纳的思维能力过程与方法1通过对实际问题的分析,感受方程作为刻画现实世界的有效模型的意义2体会到一元一次方程作为实
2、际问题的模型,能够根据实际问题建立一元一次方程的数学模型,并能归纳方程描述性的定义情感态度价值观体会数学模型化思想,感受数学的应用价值,提高学习数学的兴趣教学重点能根据具体问题的数量关系列出一元一次方程,归纳方程和一元一次方程的定义教学难点根据具体问题的数量关系列一元一次方程教学方法教师引导归纳法教科书提供了多个实际问题,教师引导学生利用具体情境中的数量关系列出一元一次方程,然后让学生观察、思考、归纳一元一次方程的定义,体验方程这种数学模型的实际意义教具准备某年某月的日历投影片三张:第一张:(记作511 A)例1第二张:(记作511 B)例2第三张:(记作511 C)例3教学过程创设问题情境,
3、引入新课师同学们,我们现在来做一个游戏,我这儿有一个月的日历,你们圈出日历中一个竖列上相邻的三个日期,把它们的和告诉我,我能马上知道这三天分别是几号生老师,把日历给我,我和你做这个游戏我现在圈出了日历中的一个竖列上相邻的三个日期,并且计算出了它们的和为33,你能知道这三天分别是几号?师这三天分别是6号、11号、18号生老师,您说得完全正确,您能告诉我们这是为什么吗?师老师用的是方程的知识来解答的这一章我们就重点研究一元一次方程的知识,老师相信,你们学习了这一章以后,比老师算得还快讲授新课1方程的描述性定义师现在,我让同学们猜一下我的年龄:我的年龄乘2减去5得数是65,你知道老师今年多大了吗?生
4、您今年35岁师你怎么知道的?生我用小学列算式的方法即老师的年龄为(65+5)2=35师有没有别的方法呢?生有,如果设您的年龄为x岁,那么“x乘以2减去5”就是2x5,所以得到等式:2x5=65我从这个等式中算出了x=35所以您的年龄是35岁师这两个同学的方法都很好,其中第二个同学的方法是设出了一个未知数,然后找到了一个能反映题意的一个相等关系,找到了一个等式2x5=65,从而解决问题的大家观察一下这个等式和我们前面见到的等式如:2+(3)=5;a+2a=3a;a+b=b+a有何不同呢?生“2x5=65”这个等式中含有未知数,我们小学时学过,这个含有未知数的等式叫做方程师我们在前面学过代数式、等
5、式和方程,它们有什么区别和联系呢?例如2x2+3x;3+(2)=1;a+b=b+a;2x5=65生2x2+3x是代数式,它不含等号;而3+(2)=1,a+b=b+a,2x5=65都是等式,因为它们都含有等号,而等号两边是代数式生等式不一定是方程,而方程一定是等式;方程中一定有未知数,而等式中不一定有未知数如3+(2)=1,a+b=b+a是等式,但不是方程,而2x5=65既是等式又是方程师看来,同学们已能对学过的知识进行归纳、总结,这是我们学习数学很重要的一种方法通过归纳、总结才能找到知识间的区别和联系由刚才的“日历中的问题”和“猜我的年龄”大家已能体会到用方程作为实际问题的数学模型的作用接下来
6、,我们再来看几个实际问题,看大家能将这些实际问题转化为数学模型即方程吗?2一元一次方程师大家来看投影片(511A)例1小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?如果设x周后树苗长高到1米,那么可以得到方程:_分析:设x周后树苗长高到1米,由已知可知树苗原来的高度为40厘米,x周后长高约15x厘米由题意可得到等量关系是什么呢?生原高+长高=1米师如何列出方程呢?生将等量关系中的量用已知数或含未知数的代数式表示出来就可以得到方程:40+15x=100师现在社会人民生活水平的提高,社会的不断进步,人们受教育的程度也在不断地迅速地提高下面有一则消
7、息是2001年3月28日新华社公布的我们一块来分析一下(投影片:511B):第五次全国人口普查统计数据截至2000年11月1日0时,全国每10万人中具有大学文化程度的人数约为3611人,比1990年7月1日0时增长了15394%问1990年6月底每10万人中约有多少人具有大学文化程度?如果设1990年6月底每10万人中约有x人具有大学文化程度,那么可以得到方程:_师我们先来分析题中的条件,找到等量关系生由题意可知,2000年11月1日0时,全国每10万人中具有大学文化程度的人数比1990年7月1日0时增长了15394%,所以2000年11月1日0时,全国每10万人中具有大学文化程度的人数=19
8、90年7月1日0时全国每10万人具有大学文化程度的人数(1+15394%)师这个同学分析的很好,谁能根据这个相等关系列出方程呢?生我们已知设1990年6月底每10万人中约有x人具有大学文化程度,并且已知条件中告诉我们2000年11月1日0时全国每10万人中具有大学文化程度的有3611人,将上述已知数3611人和未知数x代入刚才的等量关系,可得方程:(1+15394%)x=3611师很好, 看来同学们已能将简单的实际问题转化成数学模型我们再来看一个我们身边的例子好多男同学喜欢踢足球,咱们学校的操场是长方形的,它的周长是310米,长比宽长25米,这个足球场的长和宽分别是多少米?如果我设这个足球场的
9、宽为x米,长就为多少米呢?生根据长比宽长25米可知长应为(x+25)米师我们设出了题中的未知数,就可以找到等量关系列出方程,那么等量关系是什么?方程如何列呢?生等量关系应为:2(长+宽)=周长,列出的方程为:2x+(x+25)=310师有没有别的方法呢?生有,如果设长为x米,宽为(x25)米,列出的方程就为2x+(x25)=310师老师还有一个问题:我们知道足球的表面是由若干个黑色五边形和白色的六边形做成的,黑、白皮块的个数比为35,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?生老师,我知道根据题意得,黑色皮块为32=12(块),白色皮块为32=20(块)师你的思维很灵敏但如果
10、用方程来解答这个问题,如何设未知数?如何找等量关系列出方程呢?师可以设黑色皮块为x块,则白色皮块就为5即x块,由此可得到方程为x+x=32生我还有一种方法,根据题意,黑色皮块和白色皮块的总数目被分成了8份,其中黑色皮块的数目占3份,白色皮块的数目占5份,且每一份的数目是相等的因此每1份设为x块,当然黑色皮块为3x块,白色皮块为5x块,由此列出方程:3x+5x=32师这位同学的分析太精彩了,如此设未知数,可以使方程中的未知数的系数变为整数,可以使形式变得简单上面几个例子,我们将实际问题转化成了数学模型方程现在,我们一块来观察这些方程:2x5=65;40+15x=100;x(1+15394%)=3
11、611;2x+(x+25)=310;x+x=32;3x+5x=32,这些方程都有共同的特点,是什么呢?(先鼓励学生观察、思考,并用自己的语言进行描述,然后同学之间合作交流)生上面的方程都只含有一个未知数x师你知道我国古代称未知数为什么吗?生我国古代称未知数为元从咱们学的这一章的主题图中就可看出师我们一块来看一下这一章的主题图左上方,这就是我国古代表示方程的方法,其中元就表示未知数,元的左边是未知数的系数,所以它表示的方程就是:18x+16=0我们上面看到的方程只含一个未知数,因此叫一元方程,大家再来观察,未知数的指数是几次呢?生是一次的师你是如何观察出来的?生x的系数是1时可省略不写,指数是1
12、也可以省略不写师生共析由此我们可以观察得出,上述方程都是只含一个未知数,未知数的指数是1次,这样的方程叫做一元一次方程(linear equation with one unknown)我们这一章主要学习的就是一元一次方程下面我们来看例题(投影片511C)例列方程,并判断所列方程是否为一元一次方程:(1)某数的与1的和是3(2)某数的4倍等于某数的3倍与7的差(3)把某数增加20%后比这数的80%大5(4)某数与2的和的,比某数的2倍与3的差的大1师生共析列方程时,首先要审清题意,分清已知和未知及它们的数量关系,从而找到等量关系,把未知数设一字母表示,然后把未知数看作是已知数,根据等量关系列出
13、方程即可列方程时一定要抓住关键字词,如“是的几倍”;“是的几分之几(或百分之几)”;解:(1)设某数为x,列方程为:x+1=3(2)设某数为a,列方程:4a=3a7(3)设某数为y,列方程:(1+20%)x80%x=5(4)设某数为x,列方程:(x+2)(2x3)=1以上四个方程都为一元一次方程课堂练习课本P151练习1(1)可设“它”为x,则x+x=19;(2)可设甲队胜了x场,则3x+(10x)=22课时小结这节课对每种实际问题的分析,体会到一元一次方程作为实际问题的数学模型的作用进一步归纳总结方程的描述性的定义以及一元一次方程的定义感受到数学具有适用性课后作业课本P151习题51活动与探究百年问题:我国明代数学家程大为曾提出过一个有趣问题有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只羊”请问这群羊有多少头?过程可以设这群羊为x头,由题意可知赶羊的回答就是一个等量关系由此得方程x+x+x+1=100是一个一元一次方程结果x=36即这群羊有36只板书设计51你今年几岁了(1)一、方程的概念 二、一元一次方程 三、练习方程: 定义方程的解: 四、小结
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100