ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:148KB ,
资源ID:7633505      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7633505.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(全国初中数学竞赛辅导 第三十五讲《中位线及其应用》教案1 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国初中数学竞赛辅导 第三十五讲《中位线及其应用》教案1 北师大版.doc

1、第三十五讲 中位线及其应用中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用例1 如图2-53所示ABC中,ADBC于D,E,F,ABC的面积分析 由条件知,EF,EG分别是三角形ABD和三角形ABC的中位线利用中位线的性质及条件中所给出的数量关系,不难求出ABC的高AD及底边BC的长解 由已知,E,F分别是AB,BD的中点,所以,EF是ABD的一条中位线,所以由条件AD+EF=12(厘米)得EF=4(厘米),从而 AD=8(厘米),由于E,G分别是AB,AC的中点,所以EG是ABC的一条中位线,所以BC=2EG=26

2、=12(厘米),显然,AD是BC上的高,所以例2 如图 2-54 所示ABC中,B,C的平分线BE,CF相交于O,AGBE于G,AHCF于H(1)求证:GHBC;(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH分析 若延长AG,设延长线交BC于M由角平分线的对称性可以证明ABGMBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是AMN的中位线,所以GHBC,进而,利用ABC的三边长可求出GH的长度(1)证 分别延长AG,AH交BC于M,N,在ABM中,由已知,BG平分ABM,BGAM,所以ABGMBG(ASA)从而,G是AM的中点同理可证ACHNCH(

3、ASA),从而,H是AN的中点所以GH是AMN的中位线,从而,HGMN,即HGBC(2)解 由(1)知,ABGMBG及ACHNCH,所以AB=BM=9厘米,AC=CN=14厘米又BC=18厘米,所以BN=BC-CN=18-14=4(厘米),MC=BC-BM=18-9=9(厘米)从而MN=18-4-9=5(厘米),说明 (1)在本题证明过程中,我们事实上证明了等腰三角形顶角平分线三线合一(即等腰三角形顶角的平分线也是底边的中线及垂线)性质定理的逆定理:“若三角形一个角的平分线也是该角对边的垂线,则这条平分线也是对边的中线,这个三角形是等腰三角形”(2)“等腰三角形三线合一定理”的下述逆命题也是正

4、确的:“若三角形一个角的平分线也是该角对边的中线,则这个三角形是等腰三角形,这条平分线垂直于对边”同学们不妨自己证明(3)从本题的证明过程中,我们得到启发:若将条件“B,C的平分线”改为“B(或C)及C(或B)的外角平分线”(如图2-55所示),或改为“B,C的外角平分线”(如图2-56所示),其余条件不变,那么,结论GHBC仍然成立同学们也不妨试证例3 如图2-57所示P是矩形ABCD内的一点,四边形BCPQ是平行四边形,A,B,C,D分别是AP,PB,BQ,QA的中点求证:AC=BD分析 由于A,B,C,D分别是四边形APBQ的四条边AP,PB,BQ,QA的中点,有经验的同学知道ABCD是

5、平行四边形,AC与BD则是它的对角线,从而四边形ABCD应该是矩形利用ABCD是矩形的条件,不难证明这一点证 连接AB,BC,CD,DA,这四条线段依次是APB,BPQ,AQB,APQ的中位线从而ABAB,BCPQ,CDAB,DAPQ,所以,ABCD是平行四边形由于ABCD是矩形,PCBQ是平行四边形,所以ABBC,BCPQ从而ABPQ,所以 ABBC,所以四边形ABCD是矩形,所以AC=BD 说明 在解题过程中,人们的经验常可起到引发联想、开拓思路、扩大已知的作用如在本题的分析中利用“四边形四边中点连线是平行四边形”这个经验,对寻求思路起了不小的作用因此注意归纳总结,积累经验,对提高分析问题

6、和解决问题的能力是很有益处的例4 如图2-58所示在四边形ABCD中,CDAB,E,F分别是AC,BD的中点求证:分析 在多边形的不等关系中,容易引发人们联想三角形中的边的不形中构造中位线,为此,取AD中点证 取AD中点G,连接EG,FG,在ACD中,EG是它的中位线(已知E是AC的中点),所以同理,由F,G分别是BD和AD的中点,从而,FG是ABD的中位线,所以在EFG中,EFEG-FG 由,例5 如图2-59所示梯形ABCD中,ABCD,E为BC的中点,AD=DC+AB求证:DEAE分析 本题等价于证明AED是直角三角形,其中AED=90在E点(即直角三角形的直角顶点)是梯形一腰中点的启发

7、下,添梯形的中位线作为辅助线,若能证明,该中位线是直角三角形AED的斜边(即梯形另一腰)的一半,则问题获解证 取梯形另一腰AD的中点F,连接EF,则EF是梯形ABCD的中位线,所以因为AD=AB+CD,所以从而1=2,3=4,所以2+3=1+4=90(ADE的内角和等于180)从而AED=2+3=90,所以 DEAE例6 如图2-60所示ABC外一条直线l,D,E,F分别是三边的中点,AA1,FF1,DD1,EE1都垂直l于A1,F1,D1,E1求证:AA1+EE1=FF1+DD1分析 显然ADEF是平行四边形,对角线的交点O平分这两条对角线,OO1恰是两个梯形的公共中位线利用中位线定理可证证

8、 连接EF,EA,ED由中位线定理知,EFAD,DEAF,所以ADEF是平行四边形,它的对角线AE,DF互相平分,设它们交于O,作OO1l于O1,则OO1是梯形AA1E1E及FF1D1D的公共中位线,所以即 AA1+EE1=FF1+DD1练习十四1已知ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2厘米求BO的长2已知ABC中,BD,CE分别是ABC,ACB的平分线,AHBD于H,AFCE于F若AB=14厘米,AC=8厘米,BC=18厘米,求FH的长3已知在ABC中,ABAC,ADBC于D,E,F,G分别是AB,BC,AC的中点求证:BFE=EGD4如图2-61所示在四边形ABCD中,AD=BC,E,F分别是CD,AB的中点,延长AD,BC,分别交FE的延长线于H,G求证:AHF=BGF5在ABC中,AHBC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示)求证:DEF=HFE6如图2-63所示D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q求证:AP=AQ7已知在四边形ABCD中,ADBC,E,F分别是AB,CD

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服