ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:20.50KB ,
资源ID:7632918      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7632918.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学多边形的内角和1.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学多边形的内角和1.doc

1、 多边形的内角和 北京市第五中学 曹自由 教学任务分析 教学目标 知识与技能 掌握多边形内角和公式及外角和定理,并能应用. 过程与方法 1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法; 2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神. 情感态度价值观 通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情. 重点 多种方法探索多边形内角和公式 难点 多边形内角和公式的推导 教学流程安排 活动流程 活动内容和目的 活动1学生自

2、主探索四边形内角和 活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法 活动3探索n边形内角和公式 活动4师生共同研究递推法确定n边形内角和公式 活动5多边形内角和公式的应用 活动6小结 作业 从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中. 加深对转化思想方法的理解, 训练发散思维、培养创新能力. 通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法. 学生提高动手实操能力、突破“添”的思维局限 综合运用新旧知识解决问题. 回顾本节内容,培养学生的归纳概括能力. 反思总结,巩固提高. 课前准备 教具 学具 补

3、充材料 教师用三角尺 课件 剪刀 复印材料 三角形纸片 教学过程设计 问题与情景 师生行为 设计意图 活动1、2 问题1.三角形的内角和是多少? 与形状有关吗? 问题2.正方形、长方形的内角和是多少? 由此你能猜想任意凸四边形内角和吗? 动脑筋、想办法,说明你的猜想是正确的. 问题3添加辅助线的目的是什么,方法有没有什么规律呢? 学生回答: 三角形内角和是180,与形状无关;正方形、长方形内角和是360(490),由此猜想任意凸四边形内角和是360. 学生先独立探究,再小组交流讨论. 教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形

4、. 学生汇报结果. 过一个顶点画对角线1条,得到2个三角 形,内角和为2180; 画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4180-360; 若在四边形内部任取一点,如图,也可以得到相应的结论; 这个点还可以取在边上(若与顶点重合,转化为第一种情况连接对角线;否则如图4) 内角和为3180-180; 点还可以取在外部,如图5、6.由图5,内角和为3180-180;由图6,内角和为2180; 教师重点关注:学生能否借助辅助线把四边形分割成几个三角形;能否借助辅助线找到不同的分割方法. 教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .

5、以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和. 通过回忆三角形的内角和,有助于后续问题的解决. 从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法. 通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性. 通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识. 活动3 问题4怎样求n边形的内角和?(n是大于等于3的整数) 学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)

6、个三角形,(凸)n边形的内角和等于(n-2)180. 特点:内角和都是180的整数倍. 通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法. 活动4 每名同学发一张三角形纸片 问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发生了怎样的变化 问题6由四边形得到五边形呢? 依此类推能否猜想n边形内角和公式 将三角形去掉一个角可以得到四边形,如图7,四边形内角和为 180+2180-180=2180. 每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180,n边形是三角形经过(n-3)次操作得到的,所

7、以n边形内角和公式为(n-2)180 (严谨的证明应在学习数学归纳法后) 学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决 活动5 知道了凸多边形的内角和,它可以解决哪些问题呢? 问题6:六边形的外角和等于多少? n边形外角和是多少? 学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到 6180-(6-2)180=360 学生思考,回答. n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n180,而内角和为(n-2)180,因此外角和为360. 利用内角和

8、求外角和,巩固了内角和公式. 如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维 练习 一个多边形各内角都相等,都等于150,它的边数是 ,内角和是 . 练习.解:(n-2)180=150n,n=12; 或360(180-150)=12(利用外角和) 15012=1800. 巩固内角和公式,外角和定理. 活动5 小结 下面请同学们总结一下这节课你有哪些收获. 学生自己小结,老师再总结. 1. 多边形内角和公式(n-2)180,外角和是360; 2. 由特殊到一般的数学方法、转化思想. 学会总结,培养归纳概括能力. 作业: 课后思

9、考题. 一同学在进行多边形的内角和计算时,求得内角和为1125,可能吗? 当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗? 多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力. 作业: 解法1.设这是n边形,这个内角为x,依题意:(n-2)180=1125+x x=(n-2)180-1125 0x180 0(n-2)180-1125180 解得:n n是整数, n=9. x=(9-2)180-1125=135 注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表

10、示n,你能解出来吗? 解法2.设这是n边形,这个内角为x,依题意:(n-2)180=1125+x n是整数, 45+x是180的倍数. 又0x180 45+x=180,x=135,n=9 还可以根据内角和的特点,先求出内角和. 解法3.设此多边形的内角和为x,依题意:1125x1125+180 即:1806+45x1807+45 x是多边形内角和的度数 x是180的倍数 x=1807=1260 边数=7+2=9, 这个内角=1260-1125=135 解法4(极值法).设这是n边形,这个内角为x,则0x180,依题意:(n-2)180=1125+x 令x=0,得:n=,令x=180,得:n= n 其余同解法1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服