ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:24.28KB ,
资源ID:7630723      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7630723.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学下册 第2章 四边形 2.4 三角形的中位线教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.docx)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册 第2章 四边形 2.4 三角形的中位线教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.docx

1、2.4 三角形的中位线课题2.4 三角形的中位线教学目标知识与技能:1、进一步使学生掌握三角形相似的有关知识;2、能够利用三角形的中位线的知识解决三角形相似的问题;3、掌握三角形的中位线的性质和运用。过程与方法:进一步使学生掌握三角形相似的有关知识;训练学生利用三角形的中位线的知识解决三角形相似的问题;把“三角形的中位线”这一知识提升为解决图形比例关系的一个“基本相似形”,形成三角形的中位线是相似问题的一种快速算法。情感态度与价值观:经历从认识发现三角形的中位线到推理得三角形的中位线的性质的过程,体会探索发现的乐趣,增强学习数学的自信心,使学生掌握三角形相似的有关知识。通过观察、讨论、比较,研

2、究三角形的中位线的图象和性质,培养学生收集提取信息的意识和推理能力,使学生会将复杂问题转化为简单问题。培养学生数形结合的思想。重点三角形中位线的性质和运用难点正确地理解题意,发现“中点+中点中位线”的条件,把复杂图形转化为基本图形,使学生理解数形结合的思想。教学方法自主发现,合作交流课型教具计算机多媒体辅助教学、实物投影、三角尺、4个全等三角形纸片教学过程:一、创设情境、导入新课你能将任意一个三角形分成四个全等的三角形吗?请同学们拿出自己准备好的三角形纸片试着分一下。(先独立完成,再交流)学生回答:你是怎样做的?(连接每两边的中点) 提问:你认为这样做对吗?教师演示学生做的,把四个三角形折叠在

3、一起,四个三角形完全重合。本节课我们来研究一下三角形的中位线定理。(板书课题) 二、合作交流、解读探究 在草稿纸上任意画一个三角形:1、 找出三边的中点;2、连接六点中的任意两点;3、找找哪些线是你已经学过的,哪些是未曾学过的。 提问:三角形有几条中线?它们是什么点间的连线?在ABC中,若D、E、F分别是BC、AB、AC的中点,请同学们在图中,连接DE、DF、EF,(稍等片刻,让学生完成操作) 提问:这三条线段都是什么点间的连线?(中点)这三条线段称为ABC的中位线你能否根据刚才的画图,写出三角形中位线的定义呢?(学生交流、讨论)归纳:连接三角形两边中点的线段叫做三角形的中位线已知DE、EF、

4、DF是三角形的3条中位线。说说三角形的中线和三角形的中位线的异同?(都是线段,都有三条,一个是顶点与对边中点的连线,一个是两边中点的连线)跟踪练习:如果D、E分别为AB、AC的中点,那么DE为ABC的;如果DE为ABC的中位线,那么D、E分别为AB、AC的。已知DE是ABC的中位线,那么请同学们观察一下,猜一猜:中位线DE与BC在位置和数量上分别有什么关系?为了猜想中位线DE与BC在位置和数量上分别有什么关系,我们做一个拼图活动:我们把三角形沿中位线DE剪一刀试一试:你能不能把ADE和四边形BDEC拼接成一个平行四边形呢?我们把刚才拼接好的平行四边形画在练习纸上,请同学们打开,然后小组讨论一下

5、,请把你猜测的结论写在纸上(学生独立观察并猜想结论,然后同桌交流,最后集体交流,并板书结论)刚才同学们交流了利用我们所提供的图形,得到了中位线DE与BC在位置和数量上的关系,你能否用语言叙述这一结论呢?命题:三角形的中位线平行于第三边,并且等于第三边的一半你能证明这个命题吗?(板书)已知:如图,在ABC中,AD=DB,AE=EC求证:DEBC,DE= BC(经过交流、分析后,学生独立写出证明过程)已知:如图,在ABC中,AD=DB,AE=ECABCFDEABCDEFHG求证:DEBC,DE=BC。 证明:延长DE到F,使EF=DE,连接CF,AE=CE,AED=CEF(对顶角相等),ED=EF

6、,ADECFE(SAS), AD=CF(全等三角形的对应边相等),ADE=F(全等三角形的对应角相等),ADCF(内错角相等,两直线平行)。AD=DB,CF=DB,四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),DFBC,DF=BC,即DEBC,DE=BC。通过同学们的证明,可以知道你们猜想的结论是正确的我们把这个结论称为三角形中位线定理,(把命题改写成三角形中位线定理)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三、应用迁移、巩固提高 例1、已知:如果D、E、F分别是ABC的AB、AC、BC边的中点(1)若AB=8cm,求EF的长;(2)若DE=5c

7、m,求BC的长(3)若M、N分别是BD、BF的中点,问:MN与AC有什么关系?为什么?(学生口答,教师板书结论,并请学生说明理由) 三角形的中位线定理不仅有三角形的中位线与第三边之间的位置关系,而且还有它们之间的数量关系另外,从第(3)题可知:当题设中出现中点时,要考虑运用三角形的中位线定理来解决例2、学生完成课本例题分析考虑到E、F是AB、BC的中点,因此连接AC,就得到EF是ABC的中位线,由三角形的中位线定理,得EFAC且EF=AC,同理GHAC且EF=AC,则EFGH,且EF=GH,所以四边形EFGH是平行四边形。练习:教材练习 1、2 四、课堂小结1.熟记三角形中位线的概念:连接三角形两边的中点的线段叫做三角形的中位线;2.理解并掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;3.能运用三角形的中位线定理解决有关问题。 五、作业: 教材 习题2.4第1、2、3、4、5、6题个案修改

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服