ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:197KB ,
资源ID:7630647      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7630647.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(江苏省句容市后白中学九年级数学上册 弧长和扇形面积教案1 新人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省句容市后白中学九年级数学上册 弧长和扇形面积教案1 新人教版.doc

1、弧长和扇形面积第一课时 了解扇形的概念,理解,z。的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用 通过复习圆的周长、圆的面积公式,探索n。的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决一些题目上。1.重点:n的圆心角所对的弧长,扇形面积及其它们的应用2难点:两个公式的应用3关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程一、复习引入 (口问,学生口答)请同学们回答下列问题 1圆的周长公式是什么? 2圆的面积公式是什么? 3什么叫弧长?二、探索新知 (小黑板)请同学们独立完成下题:设圆的半径为R,则: 1圆的周长可以看作_度的圆一心角所 对的弧 21的圆心角所对的弧长

2、是_32的圆心角所对的弧长是_ 44的圆心角所对的弧长是_5n的圆心角所对的弧长是_ (点评)根据同学们的解题过程,我们可得到:n。的圆心角所对的弧长为 例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图示的管道的展直长度,即盈的长(结果精确到O1mm) 问题(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图示 (1)这头牛吃草的最大活动区域有多大? (2)如果这头牛只能绕柱子转过n角,那它的最大活动区域有多大? 学生提问后,点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积 (2)如果这头牛

3、只能绕柱子转过n角,那它的最大活动区域应该是n圆心角的两个半径的n圆心角所对的弧所围成的圆的一部分的图形,如图 像这样,由组成圆心角的两条半径和圆心角所 对的弧所围成的图形叫做扇形 练习:如图示 1该图的面积可以看作是_度的圆心角所对的扇形的面积 2设圆的半径为R,1的圆心角所对的扇形面积S扇形_; 3设圆的半径为R,2的圆心角所对的扇形面积S扇形_; 4设圆的半径为R,5的圆心角所对的扇形面积S扇形_; 5设圆半径为R,n的圆心角所对的扇形面积S扇形_; 检查学生练习情况并点评 例2如图,已知扇形 AOB的半径为10,AOB=60,求AB的长(结果精确到O1)和扇形AOB的面积结果精确到O1

4、) 分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足三、巩固练习教材P124练习四、应用拓展 例3(1)操作与证明:如图,0是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕0点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a (2)尝试与思考:如图,将一块半径足够长的扇形纸板的圆心角放在边长为n的正三角形或边长为n的正五边形的中心点处,并将纸板绕O点旋转,当扇形纸板的圆心角为时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_时,正五边形的边长被纸板覆盖部分的总长度也为定值a (3)探究与引申:

5、一般地,将一块半径足够长的扇形纸板的圆心放在边长为n的正n边形的中心。点处,若将纸板绕。点旋转,当扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值n,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正”边形面积S之间的关系(不需证明);若不是定值,请说明理由五、归纳小结(学生小结,点评)本节课应掌握:1n。的圆心角所对的弧长 2扇形的概念3圆心角为n。的扇形面积是 4运用以上内容,解决具体问题六、布置作业 教材P124 复习巩固1、2、3 P125 综合运用5、6、74.4弧长和扇形面积(2) 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法

6、,并会应用公式解决问题 通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题1重点:圆锥侧面积和全面积的计算公式2难点:探索两个公式的由来3关键:你通过剪母线变成面的过程一、复习引入1什么是n的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点2问题l:一种太空囊的示意图如图,太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那该太空囊要接受防高热处理的面积应由几部分组成的 (2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,圆柱的侧面积和底圆的面积 这三部分中,第二部分和第三部分我们已经学过,会求

7、出其面积,但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它二、探索新知 我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆同上任意一点的线段叫做圆锥的母线 (学生分组讨论,提问二三位同学) 问题2:与圆柱的侧面积求法一样,沿圆锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形设圆锥的母线长为l,底面圆的半径为r,如图,那么这个扇形的半径为_,扇形的弧长为_,因此圆锥的侧面积为_,圆锥的全面积为_ 例1圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到O.1cm2) 分析:只要计算纸帽的侧面积例2已知扇形的圆心角为120,面积为300cm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?三、巩固练习教材P124 练习1、2四、归纳小结(学生归纳,点评) 本节课应掌握: 1什么叫圆锥的母线 2会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题 五、布置作业:教材P124 复习巩固4 P125 综合运用8拓广探索9、10

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服