1、浙江省温州市瓯海区八年级数学上册2.3等腰三角形的判定教案 浙教版【教学目标】知识目标: 1、经历等腰三角形的判定方法的发现过程。2、掌握等腰三角形的判定方法。3、会用等腰三角形的判定方法判定等腰三角形 能力目标:培养学生逻辑思维能力、分析问题和解决问题的能力情感目标:让学生初步了解数学来源于实践,反过来又服务于反过来又服务于实践的辨证唯物主义观点【教学重点与难点】教学重点:等腰三角形的判定方法及其运用.教学难点:等腰三角形判定方法证明中添加辅助线的思想方法以及等腰三角形性质与判定的区别.【教学过程】一复习引入 提问:1、 如图,在ABC中,AB = AC,图中必有哪些角相等?为什么? A反过
2、来,若B= C,一定有AB=AC 吗? 二交流互动,探求新知 B C 1、 通过“纸制三角形实验”发现“等角对等边”的结论。这个结论是否真实可靠,必须从理论上加以证明。2、 等腰三角形判定定理的证明。如果一个三角形有两个角相等,那么这两个角所对的边也相等。已知:ABC中,B =C.求证:AB = AC.(学生思考:定理的证明方法。按实验小组进行分组讨论,探讨证明的思路。然后由一位学生口述,教师板书,学生评论,由此引出多种证法,再由学生归纳作辅助线的方法,教师总结。)教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形因为已知B =C.,没有对应相等边,所以
3、需添辅助线为两个三角形的公共边,因此辅助线应从A点引出再让学生回想等腰三角形中常添的辅助线,学生可找出作ABC的平分线AD或作BC边上的高AD等,证三角形全等的不同方法,从而推出AB=AC注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形(3)判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. (三)例题教学例1一次数学实践活动内容是测量河宽,如图2-10,即测量A,B之间的距离.同学们想出许多方法,其中小聪的方法是是:从A出发,沿着与直线AB成600角的AC方向向前
4、进至C,在C处测得C=300度.量出AC的长,它就是河的宽度(即A,B之间的距离).这个方法正确吗?请说明理由. 课堂练习:见课本中29页作业题1题例2 如图2-11,BD是等腰三角形ABC的底边AC上的高,DEBC,交AB于点E.判断BDE是不是等腰三角形,并说明理由。四、小组合作A课堂练习(1)已知:OD平分AOB,EDOB,求证:EO=ED。(2)已知:OD平分AOB,EO=ED。求证EDOB。(3)已知:EDOB,EO=ED。求证:OD平分AOB。归纳总结:该图形是有关等腰三角形的一个很常用的基本图形,上述练习说明在该图中“角平分线、平行线、等腰三角形”这三者中若有两者必有第三,熟练这
5、个结论,对解决含有这个基本图形的教复杂的题目是很有帮助的。五 、探究活动(1)已知:如图a,AB=AC,BD平分ABC,CD平分ACB,过D作EFBC交AB于E,交AC于F,则图中有几个等腰三角形?(2)如图b,AB=AC,BF 平分ABC交AC于F,CE平分ACB交AB于E,BF和BE交于点D,且EFBC,则图中有几个等腰三角形?(3)等腰三角形ABC中,AB=AC,BD平分ABC,CD平分ACB,过A作EFBC交CD延长线于E,交BD延长线于F,则图中有几个等腰三角形?(自己画图)(4)如图c,若将第(1)题中的AB=AC去掉,其他条件不变,情况会如何?还可证出哪些线段的和差关系? 六、课堂小结(师生共同小结)1、 等腰三角形的判定方法;2、辅助线;3、解决实际问题的关键七、作业:1作业本;2预习2.4节内容板书设计