ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:27KB ,
资源ID:7629240      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7629240.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(九年级数学下册 《圆的有关性质》说课案 华东师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 《圆的有关性质》说课案 华东师大版.doc

1、《圆的有关性质》教案 课题:圆的有关性质 教学目的:理解圆的定义,掌握点与圆的位置关系,培养学生用数形结合思想方法分析解决问题的能力 教学重点、难点:圆的定义的理解 教学关键:理解两点:①在圆上的点,都满足到定点(圆心)的距离等于定长(半径); ②满足到定点(圆心)的距离等于定长(半径)的点,在以定点为圆心,定长为半径的圆上。 教学过程: 一、 复习旧知: 1、 角平分线及中垂线的定义(用集合的观点解释) 2、 在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。并回答:这些圆为什么能够分别重合?并体会

2、圆是怎样形成的? 二、 讲授新课: 1、 让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。 分析归纳圆定义: 在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。 注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O 2、 进一步观察,体会圆的形成,结合园的定义,分析得出: ① 圆上各点到定点(圆心)的距离等于定长(半径) ② 到定点的距离等于定长的点都在以定点为圆心, 定长为半径的圆上。由此得出圆的定义: 圆是到定点的距离等于定长的点的集合。 例如,到平面上一点

3、O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。 3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。 圆的内部是到圆心的距离小于半径的点的集合。同样有:圆的外部是到圆心的距离大于半径的点的集合。 4、初步掌握圆与一个集合之间的关系: ⑴已知图形,找点的集合 例如,如图,以O为圆心,半径为2cm的圆, 则是以点O为圆心,2cm长为半径的点的集合; 以O为圆心,半径为2cm的圆的内部是到 圆心O的距离小于2cm的所有点的集合; 以O为圆心,半径为2cm的圆的外部是到 圆心O的距离大于2cm

4、的点的集合。 ⑵已知点的集合,找图形 例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。 5、点与圆的位置关系: 点在圆上,点在圆内,点在圆外。 点与圆的位置关系与点到圆心的距离的数量关系如下: 设圆心为O,半径为r,点P到点O的距离为d,则有 点P在圆内OP>r 点P在圆上OP=r 点P在圆外OP<r 例1:求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上。 〈分析〉证明多点共圆,由圆的定义知道,即要证明点A、B、C、D到点O等距离。 三、 巩固练习: 1、已知△AB

5、C中,∠C = 90,AC = 2cm,BC = 4cm,CM为中线,以C为圆心,cm长为半径画圆,则A、B、C、M四点中在圆外的有 在圆上的有 ,在圆的内部有 。 2、课本P 3、我们学过的所有顶点共圆的图形还有那些? 33.5 O 四、课后小结: 1、圆的两种定义 2、圆的内部,圆的外部的定义 3、点与圆的位置关系 4、点与圆的位置关系和点到圆心的距离的数量关系 5、多点共圆的证法 五、布置作业: 课本P1、(1,2)、2、3、4

6、 教学设计说明 本节课主要是通过圆的概念的探讨,深入地了解圆的形成,从而使学生脱离在小学时的对圆的肤浅认识,掌握圆在初中的知识里更完整的定义。 在教学重点上关键让学生了解圆的两点,简单的说,到圆心距离等于半径的点在圆上,圆上的点到圆心的距离等于半径,在圆的概念的引入时,首先利用集合的语言去解释圆,例如像前面学过的角平分线及中垂线的集合定义,然后利用图形的画法理解圆的定义,这样设计的目的是为了培养学生数形结合的思想。 在教学的讲授中,先让学生自己动手去演示圆的形成,要了解画一个圆的两个必需条件:定点和定长;让学生自己去体会圆的概念,同时,还会体会到圆的内部和外部的意义,并能等同的用集合的定义解释内部和外部,从而又能引出一个点和圆的位置关系,那么,学生会在一系列的过程中更清楚的认识圆的定义,更完整的了解圆。例题的设计是为了使学生掌握多点共圆必须要以定义为依据,并能探索其他的所有顶点共圆的图形。 总之,本节课主要是以教师的引导和讲授为主,通过学生的自我演示去了解圆的形成,培养学生总结归纳的能力,提高探索解决问题的能力,设计上总的框架先探索研究后理解应用.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服