ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:37.50KB ,
资源ID:7627632      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7627632.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(秋九年级数学上册 21.3 实际问题与一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋九年级数学上册 21.3 实际问题与一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

1、21.3实际问题与一元二次方程第1课时传播问题教学目标1.会利用一元二次方程解决传播问题.2.培养分析问题解决问题的能力,发展应用意识.教学重点和难点重点:利用一元二次方程解决传播问题.难点:根据传播问题列方程.教学过程一、教师导学填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.(1)题答案为11,121,(2)题答案为1+x,1+x+x(x+

2、1),先让学生自己做,然后老师进行讲解)二、合作与探究上节课我们学习了上面的例题,本节课我们再来看下面的这个例题.【例】有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每个人传染了几个人?分析:设每轮传染中平均一个人传染了x个人,那么第一轮后,共有(x+1)人得了流感;第二轮后,共有1+x+x(1+x)人得了流感,根据题意可列出等量关系.解:设每轮传染中平均每个人传染了x个人,根据题意有:1+x+x(1+x)=121,整理得:(1+x)2=121,解得x1=10,x2=-12由于方程中x表示被传染的人数,所以x=-12不符合题意,舍去.即每轮传染中平均每个人传染了10个人.

3、同学们可以想一下,如果按照这样的传染速度,第三轮后有多少人患了流感?三、巩固练习(1)在王老师所教的班级中,每两个学生都握手一次,全班学生一共握手780次,那么王老师所教的班级共有多少名学生?解:x(x-1)=780,解得x1=40,x2=-39(舍去)(2)过年了,同学互发短信拜年,共发送短信110条,则这个小组有多少个成员?(列出方程即可)解:x(x-1)=110四、能力展示某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求每轮感染中平均一台电脑会感染几台电脑?若病毒得不到控制,3轮传染后,有多少台电脑被感染?5轮感染后呢?n轮感染后呢?五、总结提升本节课

4、我们学习了利用一元二次方程解决传播问题,俗话说:一传十,十传百.这一传十,十传百是怎么传的?(指准方程)用方程来表示就是(1+x)2=121.如果传了三轮,就成了(1+x)3;如果传了十轮,就成了(1+x)10.利用此知识点,我们可以求线段的条数、角的个数、三角形的个数及多边形对角线的条数等.六、布置作业教材P21习题21.31、4第2课时平均变化率问题教学目标1.会利用一元二次方程解决增长问题.2.培养分析问题解决问题的能力,发展应用意识.教学重点和难点重点:利用一元二次方程解决增长问题.难点:根据增长问题列方程.教学过程一、教师导学填空:(1)小王家2013年收入是5万元,以后每年增长10

5、%,则小王家2014年的收入是万元,2015年的收入是万元;(2)小王家2013年收入是5万元,以后每年的增长率为x,则小王家2014年的收入是万元,2015年的收入是万元.(1)题答案为5.5、6.05,(2)题答案为5(1+x),5(x+1)2,先让学生自己做,然后老师进行讲解,并写出过程)二、合作与探究上节课我们学习了利用一元二次方程解决传播问题,什么是传播问题?就是像“一传十,十传百”这样的问题.与传播问题类似的还有一种问题,叫增长问题.下面我们就来看一个增长问题.【例】小王家2013年的收入是5万元,2015年的收入是6.05万元,求小王家收入的年平均增长率.分析:2013年的收入是

6、5万元,设平均增长率为x,则2014年的年收入为5+5x,2015年的年收入为5+5x+(5+5x)x,根据题意可得出等量关系.解:设小王家年收入年平均增长率为x,根据题意得5(1+x)2=6.05,解得:x1=0.1,x2=-2.2(舍去)即小王家年收入增长率为10%.三、巩固练习(1)某种商品原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率.解:设平均增长率为x.50(1-10%)(1+x)2=64.8解得x1=0.2=20%,x2=-2.2(舍去)(2)新华商场销售的冰箱每台进货价为2 500元,市场调研表明:当销售价

7、为2 900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5 000元,那么冰箱的定价应是多少?解:设降价x元/台,则(400-x)(8+)=5 000x1=x2=150,2 900-150=2 750(元/台)或设定价为x元/台,则(x-2 500)(4+8)=5 000.解得x=2 750(元/台).四、总结提升本节课我们学习了利用一元二次方程解决增长问题,增长问题在现在生活中很常见,它与传播问题类似,希望大家掌握解决这两个问题的方法.五、布置作业教材P21习题21.32、7第3课时图形面积问题教学内容根据面积与面积之间

8、的关系建立一元二次方程的数学模型并解决这类问题.教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.教学重难点重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教学过程一、教师导学(口述)1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?梯形的面积公式是什么?菱形的面积公式是什么?平行四边形的面积公式是什么?圆的面积公式是什么?(学生口答,老师点评)二

9、、合作与探究现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.学生活动:请同学们完成教材P20探究3.三、巩固练习有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?解:设各边垂下x尺.(6+2x)(3+2x)=263x=,x0.x=,长为尺,宽为尺.四、能力展示如图所示,在ABC中B=90,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.如果P、Q分别从A、B同时出发,经过几秒钟,使SPBQ=8cm2.五、总结提升本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.六、布置作业教材P22习题21.35、6、10.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服