ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:2.39MB ,
资源ID:7627192      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7627192.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册 第3章 圆 3.8 圆内接正多边形教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 第3章 圆 3.8 圆内接正多边形教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc

1、圆内接正多边形 模式介绍“传递-接受”模式是指在教学过程中教师主要通过口授、板书、演示,学生则主要通过耳听、眼看、手记来完成知识与技能的传授和学习,从而达到教学目标要求的一种教学模式该模式以传授系统知识、培养基本技能为目标其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性“传递-接受”教学通常包括以下五个教学环节:复习旧知激发动机讲授新知巩固运用检查评价 设计说明首先通过问题1回顾正三角形和正方形的边、角性质,达到引入正多边形的性质的目的;问题2回顾

2、正多边形的定义和性质,为接下来学习“正多边形和圆”准备条件;问题3由学生的生活实际引出圆内接正多边形、正多边形的外接圆、正多边形的半径、正多边形的中心角和正多边形的半径等概念;问题4以研究正六边形的中心角、边长和边心距的计算问题为例,举一反三,正n边形的有关计算均可以转化为解直角三角形问题来解决;问题5通过探究圆的内接正六边形和圆的内接正方形的不同作图方法,培养学生解决问题的策略 教材分析本节是北师大版义务教育教科书数学九年级下册第三章圆的第8节圆内接正多边形的教学内容,圆内接正多边形是在学生学习了三角形、四边形、多边形以及圆的相关知识之后继续学习的内容,是这些知识的综合运用和提高教材首先给出

3、了圆内接正多边形、正多边形的外接圆等相关概念,然后以正六边形为例,探求了如何求正多边形的中心角、边长及边心距等问题,进一步介绍了利用圆规和直尺画特殊的正多边形的方法本节内容利用正多边形和圆的位置关系,通过正多边形和圆的相关计算,把形的问题转化成了数的问题,体现了数形结合的思想正多边形是一种特殊的多边形,在生产和生活中有着广泛的应用,它具有一些类似于圆的性质;研究正多边形和圆的关系,掌握有关正多边形的计算是进一步学习数学及其它学科的重要基础 教学目标【知识与能力目标】1、了解圆的内接正多边形、正多边形的外接圆、正多边形的中心、半径、中心角、边心距等概念;2、会用尺规作圆的内接正方形和正六边形;3

4、、运用正多边形和圆的知识解决有关计算问题【过程与方法】通过正多边形和圆的关系教学,培养学生从具体到抽象,从特殊到一般,从部分到整体的认识事物规律的能力,以及数形结合的方法解决问题的能力【情感态度与价值观】通过等分圆周的方法画正多边形,让学生感受正多边形与圆的和谐美,从而更加热爱数学,热爱生活 教学重难点【教学重点】了解正多边形的有关概念,研究两种圆内接正方形和正六边形的尺规作图方法【教学难点】能进行正多边形和圆的有关计算 课前准备多媒体课件、教具等 教学过程【复习旧知】问题1 等边三角形的边、角各有什么性质?正方形的边、角各有什么性质? 等边三角形与正方形的边、角性质有什么共同点?各边相等、各

5、角相等问题2 我们已知学过正多边形,符合什么条件的多边形叫正多边形?你能举出几个正多边形的实例吗?正多边形既是轴对称图形又是中心对称图形吗?各边相等,各角也相等的多边形是正多边形设计意图:问题1回顾正三角形和正方形的边、角性质,达到引入正多边形的性质的目的;问题2回顾正多边形的定义和性质,为接下来学习“正多边形和圆”准备条件【激发动机】问题3 (1)正多边形在日常生活中无处不在你能举出一些这样的例子吗?日常生活中,我们经常能看到正多边形形状的物体,利用正多边形,也可以得到许多美丽的图案(2) 如果正多边形的顶点都在同一圆上,这个正多边形称之为圆的什么多边形?这个圆又称之为正多边形的什么圆?归纳

6、:顶点都在同一个圆上的正多边形叫做圆内接正多边形,这个圆叫做该正多边形的外接圆如图,五边形ABCDE是O,的内接正五边防部队形,圆心O叫做这个正五边形的中心;OA叫做这个正五边形的半径;AOB是这个正五边形的中心角;OMBC垂足为M,OM是这个正五边形的边心距设计意图:由学生的生活实际引出圆内接正多边形、正多边形的外接圆、正多边形的半径、正多边形的中心角和正多边形的半径等概念【讲授新知】问题4 如图,在圆的内接正六边形ABCDEF中,半径OC=4,OGBC,垂足为G,求这个正六边形的中心角、边长和边心距解:连接OD六边形ABCDEF是正六边形, COD是等边三角形 CD=OC=4在RtCOG中

7、,正六边形ABCDEF的中心角为60,边长为4,边心距为设计意图:以研究正六边形的中心角、边长和边心距的计算问题为例,举一反三,正n边形的有关计算均可以转化为解直角三角形问题来解决问题5 你能用尺规作一个已知圆的内接正六边形吗?分析:由于正六边形的中心角为60,因此它的边长就是其外接圆的半径R所以,在半径为R的圆上,依次截取等于R的弧,就可以六等份量,进而作出圆内接正六边形为了减少累积误差,通过常如下图那样,作O的任意一条直径FC,分别以F,C为圆心,以O的半径R为半径作弧,与O相交于点E,A和D,B,则A,B,C,D,E,F是O的六等分点,顺次连接AB,BC,CD,DE,EF,FA,便得到正

8、六边形ABCDEF追问1:除了上述方法作圆的内接正六边形外,你还有其他方法吗?等分圆周法:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形例如,画一个边长为1.5 cm的正六边形时,可以以1.5 cm为半径作一个O,用量角器画一个等于的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图)追问2:你会用用圆规和直尺来作一个已知圆的内接正方形吗?你是怎么做的?与同伴交流用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出圆的内接正方形正方形(下图)设计意图:通过探究圆的内接正六

9、边形和圆的内接正方形的不同作图方法,培养学生解决问题的策略【巩固运用】学生练习1:课本98页随堂练习学生练习2:用等分圆周的方法画出下列图案提示:第1幅图案:以圆的三等分点为圆心,圆的半径为半径作三条弧第2幅图案:以正六边形的各边中点为圆心,正六边形的边长为直径向圆外画半圆,就得到这幅图案第3幅图案:作圆的内接正五边形,再以正五边形的各个顶点为圆心,边长为半径画十条弧课堂小结:本节课学到那些知识?发现了什么?在运用所学的知识解决问题时应注意什么?1、正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距2、正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系3、画正多边形的方法4、运用以上的知识解决实际问题【检查评价】布置作业:1、教科书习题3.10第1题,第2题,第3题(必做题)2、教科书习题3.10第4题,第5题(选做题) 教学反思略

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服