ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:2.04MB ,
资源ID:7625063      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7625063.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(江苏省无锡市七年级数学上册 2.2 多项式教案2 新人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省无锡市七年级数学上册 2.2 多项式教案2 新人教版.doc

1、多项式 教    学 目 标 知识与技能 1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。 2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。 3.初步体会类比和逆向思维的数学思想。 过程与方法 由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构 体系的更新。分层次教学,讲授、练习相结合。 情感态度与价值观 培养学生观察、归纳、概括及运算能力 教材分析 教学重点 掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常

2、数项等概念。 教学难点 多项式的次数 教 学 过 程 教师活动 学生活动 备注(教学目的、时间分配) 教学过程: 一、复习引入: 1.列代数式: (1)长方形的长与宽分别为a、b,则长方形的周长是 ; (2)某班有男生x人,女生21人,则这个班一共有学生 人; m n (3)图中阴影部分的面积为_________; (4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。 复习单项式 2.观察以上所得出的四个代数式与上节课所学单项式有何区别。 (1)2(a+b) ; (2)21+x ; (3)a+b ;

3、 (4)2a+4b 。 二、讲授新课: 1.多项式: 板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项。 例如,多项式有三项,它们是,-2x,5。其中5是常数项。 一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。 例如,多项式是一个二次三项式。 注意: (1)多项式的次数不是所有项的次数之和; (2)多项式的每一项都包括它前面的符号。 例2:指出下列多项式的项和次

4、数: (1)3x-1+3x2; (2)4x3+2x-2y2。 解:略。 例3:指出下列多项式是几次几项式。 (1)x3-x+1; (2)x3-2x2y2+单项式与多项式统称整式 例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件。 解:略。 练习:1.填空:-a2b-ab+1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。 2.已知代数式2x2-mnx2+y2是关于x、y的三次三

5、项式,求m、n的条件。 3.判断: ①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12; ②多项式3n4-2n2+1的次数为4,常数项为1 三、课堂小结: ①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。 ②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。 四、作业设计 课本P60:3 由学生回答,教师应肯定每一位学生说出的特点,通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。 介绍多项式的项

6、和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系。 学生口答例2、 例3,老师在黑板上规范书写格式。 多项式的项包括前面的符号,多项式的次数应为最高次项的次数。在例3讲完后插入整式的定义: 例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。 分析:第1题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。可能有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。 板 书 设 计 一、多项式 例题 二、整式 教学后记:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服