ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:189KB ,
资源ID:7624981      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7624981.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文((贵州专用)秋九年级数学上册 2.2 第2课时 用配方法求解较复杂的一元二次方程教案1 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

(贵州专用)秋九年级数学上册 2.2 第2课时 用配方法求解较复杂的一元二次方程教案1 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc

1、第2课时 用配方法求解较复杂的一元二次方程 1.会用配方法解二次项系数不为1的一元二次方程;(重点) 2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)                     一、情景导入 某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间? 二、合作探究 探究点一:用配方法解二次项系数不为1的一元二次方程 用配方法解方程:-x2+x-=0. 解析:先把方程二次项的系数化为1,再配方成(x+m)2=n(n≥0)的形式,最后开平方即可. 解:方程两边同除以

2、-,得x2-5x+=0. 移项,得x2-5x=-. 配方,得x2-5x+(-)2=-+(-)2, 即(x-)2=. 两边开平方,得x-=±. 即x-=或x-=-. 所以x1=,x2=. 易错提醒:用配方法解一元二次方程时,易出现以下错误:(1)方程一边忘记加常数项;(2)忘记将二次项系数化为1;(3)在二次项系数化为1时,常数项忘记除以二次项系数;(4)配方时,只在一边加上一次项系数一半的平方. 探究点二:配方法的应用 【类型一】 利用配方法求代数式的值 已知a2-3a+b2-+=0,求a-4的值. 解析:观察方程可以知道,原方程可以用配方法转化为两个数的平方和等于0的

3、形式,得到这两个数都为0,从而可求出a,b的值,再代入代数式计算即可. 解:原等式可以写成:(a-)2+(b-)2=0. ∴a-=0,b-=0,解得a=,b=. ∴a-4=-4×=-. 方法总结:这类题目主要是配方法和非负数性质的综合应用,通过配方把等式转化为两个数的平方和等于0的形式是解题的关键. 【类型二】 利用配方法求代数式的最值或判定代数式的值与0的关系 请用配方法说明:不论x取何值,代数式x2-5x+7的值恒为正. 解析:本题是要运用配方法将代数式化为一个平方式加上一个常数的形式. 解:∵x2-5x+7=x2-5x+()2+7-()2=(x-)2+,而(x-)2≥0

4、 ∴(x-)2+≥. ∴代数式x2-5x+7的值恒为正. 方法总结:对于代数式是一个关于x的二次式且含有一次项,在求它的最值时,常常采用配方法,将原代数式变形为一个平方式加一个常数的形式,根据一个数的平方是一个非负数,从而就可以求出原代数式的最值. 【类型三】 利用配方法解决一些简单的实际问题 如图,一块矩形土地,长是48m,宽是24m,现要在它的中央划一块矩形草地,四周铺上花砖路,路面宽都相等,草地面积占矩形土地面积的,求花砖路面的宽. 解析:若设花砖路面宽为xm,则草地的长与宽分别为(48-2x)m及(24-2x)m,根据等量关系:矩形草地的面积=×矩形土地的面积,即可列一

5、元二次方程求解. 解:设花砖路面的宽为xm.根据题意,得(48-2x)(24-2x)=×48×24. 整理,得x2-36x=-128. 配方,得x2-36x+(-18)2=-128+(-18)2, 即(x-18)2=196. 两边开平方,得x-18=±14. 即x-18=14,或x-18=-14. 所以x1=32(不合题意,舍去),x2=4. 故花砖路面的宽为4m. 方法总结:列一元二次方程解决实际问题时,一定要检验方程的根,这些根虽然满足所列的一元二次方程,但未必符合实际问题,因此,求出一元二次方程的解之后,要把不符合实际问题的解舍去. 三、板书设计 用配方法解二次项系数不为1的一元二次方程的步骤: (1)把原方程化为一般形式; (2)二次项系数化为1,方程两边都除以二次项系数; (3)移项,把常数项移到右边,使方程左边只含二次项和一次项; (4)配方,方程两边都加上一次项系数一半的平方; (5)用直接开平方法解方程. 通过对比用配方法解二次项系数是1的一元二次方程,发现解二次项系数不是1的一元二次方程的方法,经历从简单到复杂的过程,对配方法全面认识.培养学生发现问题的能力,通过学生亲自解方程的感受与经验,总结成文,帮助学生养成系统整理知识的学习习惯.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服