1、第2课时平行四边形的对角线的特征1掌握平行四边形对角线互相平分的性质;(重点)2利用平行四边形对角线互相平分解决有关问题(难点)一、情境导入如图,在平行四边形ABCD中,AC,BD为对角线,BC6,BC边上的高为4,你能算出图中阴影部分的面积吗?二、合作探究探究点一:平行四边形的对角线互相平分【类型一】 利用平行四边形对角线互相平分求线段 已知ABCD的周长为60cm,对角线AC、BD相交于点O,AOB的周长比DOA的周长长5cm,求这个平行四边形各边的长解析:平行四边形周长为60cm,即相邻两边之和为30cm.AOB的周长比DOA的周长长5cm,而AO为共用,OBOD,因而由题可知AB比AD
2、长5cm,进一步解答即可解:四边形ABCD是平行四边形,OBOD,ABCD,ADBC.AOB的周长比DOA的周长长5cm,ABAD5cm,又ABCD的周长为60cm,ABAD30cm,则ABCDcm,ADBCcm.方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差【类型二】 利用平行四边形对角线互相平分证明线段或角相等 如图,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OEOF.解析:根据平行四边形的性质得出ODOB,DCAB,推出FDOEBO,证出DFOBEO即可证明:四边形ABCD是平行四边形,ODOB,DCAB
3、,FDOEBO.在DFO和BEO中,DFOBEO(ASA),OEOF.方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质【类型三】 判断直线的位置关系 如图,平行四边形ABCD中,AC、BD交于O点,点E、F分别是AO、CO的中点,试判断线段BE、DF的关系并证明你的结论解析:根据平行四边形的性质“对角线互相平分”得出OAOC,OBOD.利用中点的意义得出OEOF,从而利用FODEOB可得出BEDF,BEDF.解:BEDF,BEDF.理由如下:四边形ABCD是平行四边形,OAOC,OBOD.E、F分别是OA、OC的中点,OEOF,又FODEOB
4、,FODEOB(SAS),BEDF,ODFOBE,BEDF.方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题探究点二:平行四边形的面积 在ABCD中,(1)如图,O为对角线BD、AC的交点求证:SABOSCBO;(2)如图,设P为对角线BD上任一点(点P与点B、D不重合),SABP与SCBP仍然相等吗?若相等,请证明;若不相等,请说明理由解析:(1)根据“平行四边形的对角线互相平分”可得AOCO,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等解答(1)证明:在ABCD中,AOCO.设点B到AC的距离为h,则SABOAOh,SCBOCOh,SABOSCBO;(2)解:SABPSCBP.理由如下:在ABCD中,点A、C到BD的距离相等,设为h,则SABPBPh,SCBPBPh,SABPSCBP.方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形另外,等底等高的三角形的面积相等三、板书设计1平行四边形对角线互相平分2平行四边形的面积通过分组讨论学习和自主探究,加强了学生在教学过程中的实践活动,也使学生之间的合作意识增强,与同学交流学习的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,教学相长