ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:462.50KB ,
资源ID:7624965      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7624965.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(鲁教版七年级数学上册一次函数图象的应用(2).doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

鲁教版七年级数学上册一次函数图象的应用(2).doc

1、一次函数图象的应用(2)教学目标(一)教学知识点1.进一步训练学生的识图能力.2.能利用函数图象解决简单的实际问题.(二)能力训练要求1.通过函数图象获取信息,进一步培养学生的数形结合意识.2.通过函数图象解决实际问题,进一步发展学生的数学应用能力.(三)情感与价值观要求通过函数图象来解决实际问题,使学生初步认识数学与人类生活的密切联系及对人类历史发展的作用,从而培养学生学习数学的兴趣,使他们能积极参与数学活动,进而更好地解决实际问题.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息.教学方法讲、练结合法.教具准备投影片两张:第一张:补充例题(记作6.5.2 A);第二张:补充练习

2、(记作6.5.2 B).教学过程.导入新课师上节课我们学习了一次函数在水库蓄水量与干旱持续时间方面的应用,还有一次函数在摩托车油箱中的剩余油量与行驶路程方面的应用,一次函数的应用不仅仅是在这两个方面,本节课我们继续学习它的应用.讲授新课一、例题讲解1.如上图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图象填空.(1)当销售量为2吨时,销售收入=_元,销售成本=_元;(2)当销售量为6吨时,销售收入=_元,销售成本=_元;(3)当销售量等于_时,销售收入等于销售成本;(4)当销售量_时,该公司赢利(收入大于成本);当销售量_时,该公司亏损(收

3、入小于成本);(5)l1对应的函数表达式是_;l2对应的函数表达式是_.师请大家先独立思考,然后小组交流后回答.生解:(1)当销售量为2吨时,销售收入=2000元,销售成本为3000元;(2)当销售量为6吨时,销售收入=6000元,销售成本=5000元;(3)当销售量等于4吨时,销售收入等于销售成本;(4)当销售量大于4吨时,该公司赢利,当销售量小于4吨时,该公司亏损.(5)直线l1经过原点和(4,4000),设表达式为y=kx,把(4,4000)代入,得4000=4k,k=1000l1的表达式为y=1000xl2经过点(0,2000)和(4,4000)设表达式为y=kx+b根据题意,得b=2

4、0004k+b=4000把代入,得4k+2000=4000k=500l2的表达式为y=500x+2000故l1对应的函数表达式为y=1000x,l2对应的函数表达式为y=500x+2000(2)我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如下图.在下图中,l1,l2分别表示两船相对于海岸的距离S(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快?(3)15分内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查。照

5、此速度,B能否在A逃入公海前将其拦截?师我们一起来完成本题的问题.解:观察图象,得(1)当t=0时,B距海岸0海里,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系;(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快.(2)延长l1,l2,可以看出,当t=15时,l1上对应点在l2上对应点的下方,这表明,15分时B尚未追上A.(4)如下图,l1,l2相交于点P,因此,如果一直追下去,那么B一定能追上A.(5)下图中,l1与l2交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A.2.补充例题投

6、影片(6.5.2 A)某玩具厂计划生产一种玩具熊猫,每月最高产量为140只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R元,销售收入为P元,且R、P与x的关系分别为R=500+30x,P=55x.(1)在同一直角坐标系中作出它们的函数图象;(2)至少生产_,才能保证不亏损.解:(1)函数图象如下,l1表示销售收入与生产数量的关系.l2表示销售成本与生产量的关系.(2)至少生产20只,才能保证不亏损.二、想一想师在解决上面的实际问题时,我们都是根据观察图象得出答案的,大家思考一下,这种解决问题的方法是否惟一?生不是惟一方法,我们还可用代数方法求解.课堂练习(一)随堂练习某电视机厂要印

7、制产品宣传材料.甲印刷厂提出,每份材料收1元印制费,另收1500元制版费;乙厂提出,每份材料收2.5元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系内作出它们的图象;(3)根据图象回答下列问题.印制800份宣传材料时,选择哪家印刷厂比较合算?电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?解:(1)设甲、乙厂的收费分别为y1,y2,则y1=x+1500y2=2.5x(2)图象如下(3)印制800份宣传材料时,选择乙厂合算.付出3000元印制费时,找甲厂印制的宣传材料多一些.(二)补充练习投影片(6.5.2

8、B)某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(微克)随时间x(时)的变化情况如图所示,当成人按规定剂量服药后.(1)服药后_时,血液中含药量最高,达每毫升_微克,接着逐步衰减;(2)服药后5时,血液中含药量为每毫升_微克;(3)当x2时,y与x之间的函数关系式是_;(4)当x2时,y与x之间的函数关系式是_.(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围是_时.解:观察图象可知:(1)服药后2时,血液中含药量最高,达每毫升6微克,接着逐步衰减;(2)服药后5时,血液中含药量为每毫升3微克;(3)当x2

9、时,y与x之间的函数关系式为y=3x;(4)当x2时,y与x之间的函数关系式为y=8x;(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围是15小时.课时小结本节课进一步学习一次函数图象的应用,不仅要掌握根据图象正确获取信息,而且还要会根据信息绘制相应的函数图象.课后作业习题6.7.活动与探究某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同,设汽车每月行驶x千米,应付给个体车主的月费用y1元,应付给出租车公司的月租费是y2元,y1、y2分别与x之间的函数关系图象如图,观察图象回答下列问题.(1)每月行驶的路程在什么范围内时、租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪一家的车合算?解:观察图象可知:(1)每月行驶的路程小于1500千米时,租国营公司的车合算.(2)每月行驶的路程等于1500千米时,租两家车的费用相同.(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算.板书设计6.5.2 一次函数图象的应用(二)一、例题讲解(有关销售收入与销售成本,销售量间的关系)二、想一想三、课堂练习四、课时小结五、课后作业

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服