ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:57KB ,
资源ID:7623021      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7623021.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(安徽省枞阳县钱桥初级中学八年级数学下册 17.3 一元二次方程的根的判别式教案3 (新版)沪科版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

安徽省枞阳县钱桥初级中学八年级数学下册 17.3 一元二次方程的根的判别式教案3 (新版)沪科版.doc

1、17.3 一元二次方程的根的判别式一、素质教育目标(一)知识教学点:1熟练运用判别式判别一元二次方程根的情况2学会运用判别式求符合题意的字母的取值范围和进行有关的证明(二)能力训练点:1培养学生思维的严密性,逻辑性和灵活性2培养学生的推理论证能力(三)德育渗透点:通过例题教学,渗透分类的思想二、教学重点、难点、疑点及解决方法1教学重点:运用判别式求出符合题意的字母的取值范围2教学难点:教科书上的黑体字“一元二次方程ax2bxc0(a0),当0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立对此的正确理

2、解是本节课的难点可以把这个逆命题作为逆定理三、教学步骤(一)明确目标上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a0),当0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当0时,没有实数根”这个结论可以看作是一个定理在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用本节课的目标就是利用其逆定理,求符合题意的字母的取值范围,以及进行有关的证明(二)整体感知本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用不但不求

3、根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练(三)重点、难点的学习及目标完成过程1复习提问(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?2将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c0,如果方程有两个不相等的实数根,则0;如果方程有两个相等的实数根,则=0;如果方程没有实数根,则0”即根据方程的根的情况,可以决定值的符号,的符号,可以确定待定的字母的取值范围请看下面的例题

4、:例1 已知关于x的方程2x2-(4k+1)x+2k2-10,k取什么值时(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(1)方程无实数根解: a2, b-4k-1,c2k2-1, b2-4ac(-4k-1)2-42(2k2-1)8k+9方程有两个不相等的实数根方程有两个相等的实数根方程无实数根本题应先算出“”的值,再进行判别注意书写步骤的简练清楚练习1已知关于x的方程x2(2t1)x(t-2)20t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?学生模仿例题步骤板书、笔答、体会教师评价,纠正不精练的步骤假设二项系数不是2,也不是

5、1,而是k,还需考虑什么呢?如何作答?练习2已知:关于x的一元二次方程:kx2+2(k+1)x+k=0有两个实数根,求k的取值范围和学生一起审题(1)“关于x的一元二次方程”应考虑到k0(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到0由k0且0确定k的取值范围解: 2(k1)2-4k28k4原方程有两个实数根学生板书、笔答,教师点拨、评价例 求证:方程(m21)x2-2mx(m24)0没有实数根分析:将算出,论证0即可得证证明:(-2m)2-4(m2+1)(m2+4)4m2-4m4-20m2-16-4(m44m24)-4(m22)2 不论m为任何实数,(m22)

6、20 -4(m22)20,即0 (m21)x2-2mx(m2-4)0,没有实根本题结论论证的依据是“当0,方程无实数根”,在论证0时,先将恒等变形,得到判断一般情况都是配方后变形为:a2,a22,(a22)2,-a2,-(a22)2,-(a2)2,从而得到判断本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨此种题型的步骤可归纳如下:(1)计算;(2)用配方法将恒等变形;(3)判断的符号;(4)结论练习:证明(x-1)(x-2)=k2有两个不相等的实数根提示:将括号打开,整理成一般形式学生板书、笔答、评价、教师点拨(四)总结、扩展1本节课的主要内容是教科书上黑体字的应用,求符合题意

7、的字母的取值范围以及进行有关的证明须注意以下几点:(1)要用b2-4ac,要特别注意二次项系数不为零这一条件(2)认真审题,严格区分条件和结论,譬如是已知0,还是要证明0(3)要证明0或0,需将恒等变形为a22,-(a2)2从而得到判断2提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力四、布置作业1教材P29中B1,2,32当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解(2、3学有余力的学生做)五、板书设计123 一元二次方程根的判别式(二)一、判别式的意义:三、例1四、例2=b2-4ac二、方程ax2bxc0(a0)(1)当0,练习1练习2(2)当0,(3)当0,反之也成立六、作业参考答案方程没有实数根B3证明: (2k1)24(k1)4k25当k无论取何实数,4k20,则4k250 0 方程x2+(2k+1)x+k-1=0有两个不相等的实数根2解: 方程有实根, 2(a1)-4(a24a-5)0即:a3,a的正整数解为1,2,3 当a1,2,3时,方程x22(a1)xa24a-50有实根3分析:“方程”是一元一次方程,还是一元二次方程,需分情况讨论:(2)当2m-10时, 无论m取何实数8(m-1)20,即0 方程有实数根

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服