ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:133KB ,
资源ID:7622055      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7622055.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(云南省昆明市艺卓高级中学九年级数学上册《1.3 线段的垂直平分线》教学设计(2) 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

云南省昆明市艺卓高级中学九年级数学上册《1.3 线段的垂直平分线》教学设计(2) 北师大版.doc

1、线段的垂直平分线一、内容与分析本节课要学习的主要内容是三角形三边垂直平分线定理和尺规作图,指的是证明三角形三边垂直平分线交点到三边距离相等,并把这个性质应用到尺规作图和实际生活中,其核心是性质的应用。由于上节课刚学习的线段垂直平分线,这节课学生在证明三角形三边垂直平分线交于一点时可能也较抽象,三边垂直平分线的交点与以后学习圆有一定联系,实际上这个交点就是外心。教学的重点是能够证明与线段垂直平分线相关的结论并能尺规作图,解决重点的关键是教学时,教师应逐步引导,学生对它的理解要有一个过程。二、目标与分析教学目标:能够证明三角形三边垂直平分线交于一点,能够作出以a为底,h为高的等腰三角形。目标分析:

2、能够证明三角形三边垂直平分线交于一点是指在探索发现的基础上证明三角形三边垂直平分线的性质并证明,在几何中三角形的三边垂直平分线交点应用非常广,所以要求掌握并初步应用在尺规作图中。三、问题诊断分析 本节课学生可能遇到的困难是对于三角形三边垂直平分线的交点的应用不熟练,产生的原因是本身该定理就有些抽象,学生掌握起来也困难,要解决这个问题教师要多留时间给学生观察发现三角形三边垂直平分线的性质,在应用时题目不宜过难。四、教学过程分析问题1:请同学们用尺规作图作三条边的垂直平分线。设计意图:让学生利用自己的动手体会三类三角形三条边的垂直平分线交于一点的正确性,同时也复习了上节课的知识。师生活动:请同学们

3、剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流。问题2:教师质疑:“这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义”我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的不妨我们再来看一下演示过程,或许你能从中受到启示通过演示和启发,引导学生认同:“两直线必交于一点,那么要想证明“三线共点,只要证第三条直线过这个交点或者说这个点在第三条直线上即可。” 虽然我们已找到证明“三线共点”的突破口,询问学生如何知道这个交点在第三边的垂直平分线上呢?已知:在AB

4、C中,设AB、BC的垂直平分线交于点P,连接AP,BP,CP求证:P点在AC的垂直平分线上证明:点P在线段AB的垂直平分线上,PA=PB(线段垂直平分线上的点到线段两个端点的距离相等)同理PB=PCPA=PCP点在AC的垂直平分线上(到线段两个端点距离相等的点.在这条线段的垂直平分线上)AB、BC、AC的垂直平分线相交于点P进一步设问:“从证明三角形三边的垂直平分线交于一点,你还能得出什么结论?” (交点P到三角形三个顶点的距离相等)定理三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等变式练习:1分别作出直角三角形、锐角三角形、钝角三角形三边的垂直平分线,说明交点分;别在什么位

5、置2已知:ABC中,AB=AC,AD是BC边一上的中线,AB的垂直平分线交AD于O求证:OA=OB=OC 问题3:你能借用尺规作图作已知一条边及这条边上的高,作出相关的三角形吗?设计意图:让学生体验利用尺规作图作出的三角形是否惟一,即是否确定。师生活动:教师可以通过以下几个小问题来逐步解答这个问题:(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗? (3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个? 答:(1)已知三角形

6、的一条边及这条边上的高,能作出三角形,并且能作出无数多个,如下图:已知:三角形的一条边a和这边上的高h求作:ABC,使BC=a,BC边上的高为h 从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定,我们可将垂足取在线段BC上或其所在直线上的任意一点D,过此点作BC边的垂线,最后以D为端点在垂线上截取AD(或A1D),使AD=A1D=h,连接AB,AC(或A1B,AlC),所得ABC(或A1BC)都满足条件,所以这样的三角形有无数多个观察还可以发现这些三角形不都全等。(2)如果已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有无数多个根据线段垂直平分线的性

7、质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因为只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形另外有学生补充:“不是底边垂直平分线上的任意一点都满足条件,如底边的中点在底边上,不能构成三角形,应将这一点从底边的垂直平分线上挖去”(3)如果底边和底边上的高都一定,这样的等腰三角形应该只有两个,并且它们是全等的,分别位于已知底边的两侧已知底边及底边上的高,求作等腰三角形已知:线段a、h求作:ABC,使AB=AC,BC=a,高AD=h作法:1作BC=a;2作线段Bc的垂直平分线MN交BC于D点;3以D为圆心,h长为半径作弧交MN于A点;4连接AB、ACABC就是所求作的三角形(如图所示)六、课时小结 本节课通过折纸,推理证明了“到三角形三个顶点距离的点是三角形三条边的垂直平;分线的交点,及三角形三条边的垂直平分线;交于一点”的结论,并能根据此结论“已知等腰三角形的底和底边的高,求作等腰三角形”

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服