ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:114.50KB ,
资源ID:7621900      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7621900.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册 第三十章 二次函数 30.4 二次函数的应用教案 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 第三十章 二次函数 30.4 二次函数的应用教案 (新版)冀教版-(新版)冀教版初中九年级下册数学教案.doc

1、30.4 二次函数的应用30.4.1 抛物线形问题学习目标1掌握二次函数模型的建立,会把实际问题转化为二次函数问题2利用二次函数解决拱桥、涵洞关问题3能运用二次函数的图象与性质进行决策教学过程一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,请你确定校门的高度是多少?二、合作探究探究点:拱桥、涵洞问题例1如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米水面下降1米时,水面的宽度为_米解析:如图,建立直角坐标系,设这条抛物线为yax2,把点(2,2)代入,得2

2、a22,a,yx2,当y3时,x23,x.故答案为2.方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题 例2如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米现以O点为原点,OM所在直线为x轴建立直角坐标系(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3)若要搭建一个矩形“支撑架”ADDCCB,使C、D点在抛物线上,A、B点在地面

3、OM上,则这个“支撑架”总长的最大值是多少?分析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M(12,0)和抛物线顶点P(6,6);已知顶点坐标,可设二次函数关系式为ya(x6)26,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长ADDCCB二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题解:(1)根据题意,分别求出M(12, 0),最大高度为6米,点P的纵坐标为6,底部宽度为12米,所以点P的横坐标为6,即P(6,6)(2)设此函数关系式为ya(x6)26.因为函数ya(x6)26经过点(0,3),所以3a(06

4、)26,即a.所以此函数关系式为y(x6)26x2x3.(3)设A(m,0),则B(12m,0),C(12m,m2m3),D(m,m2m3)即“支撑架”总长ADDCCB(m2m3)(122m)(m2m3)m218.因为此二次函数的图象开口向下所以当m0时,ADDCCB有最大值为18.三、板书设计建立二次函数模型:(1)拱桥问题;(2)涵洞问题.教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决生活中的实际问题.30.4.2 实际问题中二次函数的最值问题学习目标1经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系2会运用二次函数求实际

5、问题中的最大值或最小值3能应用二次函数的性质解决图形最大面积、利润最大问题教学过程一、情境导入孙大爷要围成一个矩形花圃花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米当x为何值时,S有最大值?并求出最大值二、合作探究探究点一:最大面积问题【类型一】利用二次函数求最大面积例1小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?分析:利

6、用矩形面积公式就可确定二次函数(1)矩形一边长为x,则另一边长为,从而表示出面积;(2)利用配方法求出顶点坐标解:(1)根据题意,得Sxx230x.自变量x的取值范围是0x30.(2)Sx230x(x15)2225,a10,S有最大值,即当x15(米)时,S最大值225平方米方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系【类型二】最大面积方案设计例2施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米现以O点为原点,OM所在直线为x轴建立直角坐标

7、系(如图所示)(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下解:(1)M(12,0),P(6,6)(2)设这条抛物线的函数关系式为ya(x6)26,因为抛物线过O(0,0),所以a(06)260,解得,a,所以这条抛物线的函数关系式为:y(x6)26,即yx22x.(3)设OBm米,则点A的坐标为(m,m22m),所以ABDCm22m.根据抛物线的轴对称,可得OBCMm

8、,所以BC122m,即AD122m,所以lABADDCm22m122mm22mm22m12(m3)215.所以当m3,即OB3米时,三根木杆长度之和l的最大值为15米探究点二:最大利润问题【类型一】利用解析式确定获利最大的条件例3为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议分析:在这个工业生产

9、的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润一天生产的产品件数每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议解:设该厂生产第x档的产品一天的总利润为y元,则有y102(x1)764(x1)8x2128x6408(x8)21152.当x8时,y最大值1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大建议:若想获得最大利润,应生产第8档次的产品(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润例4某水果店销售某种水果,由历年市

10、场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2mx28mxn,其变化趋势如图所示(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y2的图象经过两点(3,6),(7,7),解得y2的解析式为y2x2x(1x12)(2)设y1kxb,函数y1的图象过两点(4,11),(8,10),解得y1的解析式为y1x12(1x12)设这种水果每千克所获得的利润为w元则wy1y2(x12)(x2x)x2x,w(x3)2(1x1

11、2),当x3时,w取最大值,第3月销售这种水果,每千克所获的利润最大,最大利润是元/千克三、板书设计实际问题中二次函数的最值问题:(1)几何图形最大面积问题;(2)商品利润最大问题.教学反思教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况,培养学生将实际问题转化为函数问题并利用函数的性质进行决策的能力.30.4.3 将二次函数问题转化为一元二次方程问题学习目标1经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系2能将二次函数问题转化为一元二次方程问题解决运动轨迹及落点问题.教学过程一、情境导入跳绳是同学们非

12、常喜欢的一种体育活动,在跳绳时,绳甩到最高处的形状可近似地看作抛物线如图,正在甩绳的甲、乙两名学生拿绳的手间距为4米,设拿绳的手此时距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米和2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,根据以上信息你能知道学生丁的身高吗?要解决这个问题,同学们分析一下,我们会利用哪些知识来解决?二、合作探究探究点:二次函数在体育活动中的应用【类型一】 运动轨迹问题例1某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨

13、迹为抛物线,篮圈距地面3米(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?分析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x1时函数y的值与最大摸高3.1米的大小解:(1)由条件可得到球出手点、最高点和篮圈的坐标分别为A(0,),B(4,4),C(7,3),其中B是抛物线的顶点设二次函数关系式为ya(xh

14、)2k,将点A、B的坐标代入,可得y(x4)24.将点C的坐标代入解析式,得左边右边,即点C在抛物线上,所以此球一定能投中(2)将x1代入解析式,得y3.因为3.13,所以盖帽能获得成功【类型二】 落点问题例2如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米(取47)?(3)运动员乙要抢到第

15、二个落点D,他应再向前跑多少米(取25)?分析:要求足球开始飞出到第一次落地时,抛物线的表达式,则需要根据已知条件确定点A和顶点M的坐标,因为OA1,OB6,BM4,所以点A的坐标为(0,1),顶点M的坐标是(6,4)根据顶点式可求得抛物线关系式因为点C在x轴上,所以要求OC的长,只要把点C的纵坐标y0代入函数关系式,通过解方程求得OC的长要计算运动员乙要抢到第二个落点D,他应再向前跑多少米,实际就是求DB的长求解的方法有多种解:(1)设第一次落地时,抛物线的表达式为ya(x6)24,由已知:当x0时,y1,即136a4,所以a.所以函数表达式为y(x6)24或yx2x1;(2)令y0,则(x

16、6)240,所以(x6)248,所以x14613,x2460(舍去)所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CDEF(即相当于将抛物线AEMFC向下平移了2个单位)所以2(x6)24,解得x162,x262,所以CD|x1x2|410.所以BD1361017(米)方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答三、板书设计将二次函数问题转化为一元二次方程问题:(1)运动轨迹问题;(2)落点问题.教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决实际问题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服