ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:3.42MB ,
资源ID:762167      下载积分:11 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/762167.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(锐角三角函数-正切教学设计.doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

锐角三角函数-正切教学设计.doc

1、 23.1锐角的三角函数 1. 锐角的三角函数 第一课时 正切 教学目标 u 知识与技能 1.初步了解角度与数值的一一对应的函数关系。 2.会求直角三角形中某个锐角的正切值。 3.了解坡度的有关概念。 u 过程与方法 让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。 u 情感态度 通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。 教学重点: 1.从现实情境中探索直角三角形的边角关系。 2.理解正切、倾

2、斜程度、坡度的数学意义,密切数学与生活的联系。 教学难点: 锐角三角函数的概念的理解。 教学准备 多媒体课件制作 教学设计 一、导入新课 导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡? 陡峭堪比过山车! 不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。 大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么? (导入课题锐角三角函数) 二、推进新课

3、 1.交流合作 【问题1】在图23-2中有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,哪个更陡?你是怎么判断的? 学生可由水平长度相等,铅直高度不同进行判断.   【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB与A1B1  哪个更陡?你又是如何判断呢? 设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢? 【问题3】 如图,在锐角A的一边上任取一点B,自点B向另一边作垂线,垂足为C,得到Rt△ABC;再任取一点B1,自点B1向另一边作垂线,垂足为C1

4、得到Rt△……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A的对边与邻边之比,,……有怎样的关系? 请同学们小组合作测量并计算它们的近似值,看看会有什么发现? 同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。 引导学生独立证明:易知,∥∥∥∥…, ∴△ABC∽△∽△∽△∽…, ∴===…. 因此,在这些直角三角形中,∠A的对边与邻边的比值是一个固定值. 设计意图:理论证明太过抽象性,让学生经历“操作—猜测—论证—归纳”的自我体验过程,达到教学目标,培养了学生发现问题、解决问题的能力. 3.  正切函数概念的

5、提出 在日常生活和数学活动中,上面所得出的结论是非常有用的.为了叙述方便,作出如下规定: 如图25-5,在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做 ∠A的正切,记作tan A,即tan A= 注意:正切的定义是在直角三角形中,相对其锐角而定义的,实质是两条线段长度的比,它只是一个数值,没有单位,其大小只与角的大小有关,与三角形的大小无关. 4.坡度和坡角 对于交流中“当水平长度和铅直高度都不相等时,判断坡度的大小”,你现在能判断了吗? 结合图形,教师讲述坡度概念,并板书: 坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比), 一般用i

6、表示,即i=, 把坡面与水平面的夹角α叫做坡角(或称倾斜角). 引导学生结合图形思考,坡度i与坡角α之间具有什么关系? i==tan α. 你们能计算一下课本图23-2、图23-3中坡面AB与和坡面A1B1的坡度吗? 显然,坡度i越大,坡角α越大,坡面就越陡 三、拓展延伸 例1.在Rt△ABC中,∠C=90°,AC=4,BC=3,求tanA和tanB. 解: 思考:tanA和tanB的值有什么样的关系?如右图tanA=和tanB=又有怎样的关系? 学生总结: 当两个互余锐角的正切互为倒数。即:若∠A+∠B=90°,则有tanA·tanB=1 设计意图:

7、由题目的结果,让学生自己找出三角函数中的相互关系。而不是教师直接的灌输。 四、巩固应用 现在大家能理解开始我们对于那座桥出现的两个数据的含义了吗?6.1%是桥的 坡度i,4度是坡角。那么从数据上看桥面是否如我们看到的那样陡呢? 江岛大桥全长约1446米,高约44米,桥下可供5000吨级的轮船通过。一侧的斜率为6.1%,你能计算出这一侧的水平长度约有多长吗?坡面的长度大约是多少呢? 设计意图:善始善终,回归生活实际,用知识来解决实际问题,激发学生应用新知的意识,巩固所学。 五、课堂小结 学生自主小结,在相互的交流中,感知本节课学习的体会和收获。可能在讨论中会存在一些困惑

8、此时,教师及时点拨,合作完成课堂小结。 1、 直角三角形两条直角边的比随着直角三角形中锐角大小的确定而唯一确定。 2、 正切的概念。 3、 两个互余锐角的正切互为倒数。 即:若∠A+∠B=90°,则有tanA·tanB=1 设计意图:体现教学的民主性,同时培养学生归纳、概括问题的能力和团队合作精神,教师适当引导学生反思学习过程,增强信心,提高兴趣。 六、课后作业 P114练习第2、3题 奥赛链接 如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处,已知AB=8,BC=10,则tan∠EFC的值为(  ). A.    B.   C.   D. 板书设计

9、 23.1锐角的三角函数-正切 ∠A的正切,记作tan A,即tan A= 坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比), 一般用i表示,即i=, 把坡面与水平面的夹角α叫做坡角(或称倾斜角). i==tan α. 您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。阅读过后,希望您提出保贵的意见或建议。阅读和学习是一种非常好的习惯,坚持下去,让我们共同进步。 THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习课件等等 打造全网一站式需求 欢迎您的下载,资料仅供参考 -可编辑修改-

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服