ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:108.50KB ,
资源ID:7621507      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7621507.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(畅优新课堂八年级数学下册 第2章 四边形 2.5 矩形(第1课时)教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

畅优新课堂八年级数学下册 第2章 四边形 2.5 矩形(第1课时)教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc

1、矩形教学目标1知识与技能:了解矩形的概念以及矩形与平行四边形之间的关系;了解矩形的性质;了解矩形既是轴对称图形又是中心对称图形;会用矩形的判定定理和性质定理进行推理和计算2. 过程与方法:经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法;让学生通过观察实例,感受到矩形是特殊的平行四边形,它具有平行四边形的所有特征,经历探索、归纳矩形的特征和识别的过程,知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.3.情感态度与价值观:在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神;通过对矩形

2、的探索学习,体会它的内在美和应用美;培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值重点难点1、重点:矩形的性质和常用判别方法的理解和掌握2、难点:矩形的性质和常用判别方法的综合应用教学策略分析启发、合作探究式教 学 活 动课前、课中反思(一)、情境导入: 演示平行四边形活动框架.如图,用四根木条做一个平行四边形的活动木框,将其直立在桌面上,轻轻地推动点D,你会发现什么?请同学们观察并发言可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状今天我们来学习一种特殊的平行四边形-矩形(二)、合作讨论、探索新知1. 归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具

3、备什么条件时,就成了矩形?(学生思考、回答.)结论:有一个角是直角的平行四边形是矩形.2探究矩形的性质:(1). 问题:矩形除了“有一个角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.) 结论:矩形的四个角都是直角.(2). 探索矩形对角线的性质:ADCB图(1)矩形的边之间有什么关系?由于矩形也是平行四边形,因此矩形的对边相等。那么矩形的两条对角线之间有什么关系呢?由于矩形也是平行四边形,因此矩形的对角线与相平分。除此之外,矩形的两条对角线还有进一步的关系,下面展开讨论。如图(1)所示,四边形ABCD是矩形,于是有BC=AD,CBA=DAB=90,AB=BA,因此CBA

4、DAB从而AC=BD即矩形的对角线相等。结论:矩形的对角线相等且互相平分.(3). 议一议:(引导学生讨论 解决.). 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由. 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗? CDBA(4). 归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形的对边平行且相等; 矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.3.我们可以得到识别一个四边形是矩形的方法:如果四边形ABCD是平行四边形,那么再加上什么条件就可以变为矩形了呢 (学生讨论口答) ?(1)有一个角是直角的平行四边形

5、是矩形;(2)对角线相等的平行四边形是矩形另外,四边形加上什么条件,可以成为矩形:(3)四个角都是直角的四边形是矩形;(4)对角线互相平分且相等的四边形是矩形(三)、典例剖析、巩固新知例1:(性质的运用,渗透矩形对角线的“化归”功能.)如图(2),矩形ABCD的两条对角线相交于点O,AOB= 60,AB=4cm,求矩形对角线的长说明:本题有助于学生加深对矩形性质定理的理解,BDAC图(2)O教学中应引导学生探索解法解:四边形ABCD是矩形,AC与BD相等且互相平分AEDCBF图(3)OA=OB又AOB= 60,AOB是等边三角形 OA=AB=(cm)矩形对角线的长AC=BD=OA=(cm)A(

6、四)、知识拓展、锻炼思维已知:如图(4),四边形ABCD中,ABC=ADC=90, E是AC的中点,EF平分BED交BD于点F ()猜想:EF与BD具有怎样的关系? ()试证明你的猜想 说明:本例是一道不给出“结论”,需要学生自己观察、猜想、讨论几何命题,有助于发展学生的推理能力解:()EF垂直平分BD ()证明:(略) 分析:应学会从复杂图形中分解出基本图形如下图:(五)、随堂练习(六)、归纳小结、反思提高师:你的收获和体会是什么?生:(学生畅所欲言)1、矩形性质:(1)、矩形的对边平行且相等; (2)、矩形的四个角都是直角;(3)、矩形的对角线相等且互相平分;(4)、矩形既是轴对称图形,又是中心对称图形.2、矩形的判定方法:(1))、有一个角是直角的平行四边形是矩形;(2)、对角线相等的平行四边形是矩形(3)、四个角都是直角的四边形是矩形;(4)、对角线互相平分且相等的四边形是矩形3、直角三角形斜边上的中线等于斜边的一半 (七)、作业经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法;让学生通过观察实例,感受到矩形是特殊的平行四边形,它具有平行四边形的所有特征,经历探索、归纳矩形的特征和识别的过程,知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想课后反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服