ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:578.50KB ,
资源ID:7620959      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7620959.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学下册 16.2 二次根式的乘除教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册 16.2 二次根式的乘除教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc

1、16.2二次根式的乘除一、教学目标1. 理解 (a0,b0),= (a0,b0),并利用它们进行计算和化简;2. 理解 = (a0,b0)和=(a0,b0)及利用它们进行计算;3.了解最简二次根式的概念。二、课时安排1课时三、教学重点1. (a0,b0),= (a0,b0)及它们的运用。2. 理解 = (a0,b0)和=(a0,b0)及利用它们进行计算。四、教学难点发现规律,导出 (a0,b0)。发现规律,归纳出二次根式的除法规定五、教学过程(一)新课导入上节课我们学习了什么是二次根式以及二次根式的特点,现在,我们一起来复习一下这些基本的知识吧。(引导学生复习基本知识)二次根式的特点及性质。在

2、有理数的运算中,我们学习了加、减、乘、除四则运算,那么,在我们学习了二次根式之后,大家有没有考虑过,两个二次根式能否进行加、减、乘、除运算?怎样运算?让我们从研究乘法开始。(二)讲授新课二次根式的乘法:【探究】现在,大家来看一下课本的探究内容,研究一下二次根式的乘法吧。课本P6探究内容。从刚刚的结果中,我们可以看到,分别有这样的等式, = , =, =。大家能用字母表示你所发现的规律吗?(学生讨论回答)将字母表示规律,就得到二次根式的乘法法则:一般地,对二次根式的乘法规定为 (a0,b0)从这个乘法法则中,我们需要知道:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,并且把这

3、两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。在这里,如果没有特殊要求,我们的被开方数都是正数。现在,我们来练习一下利用乘法法则计算吧。课本例1。例1只是简单的利用公式进行计算,大家想一想,根据等式的定义,把式子反过来同样成立。=(a)根据这个式子,我们可以利用它对二次根式进行化简。大家思考这样一个问题,= 成立吗?为什么?(学生回答)大家回答的很正确,这样是不正确的,原因呢,就是=(a)。课本例2。从这个例题中,我们可以总结出化简二次根式的一般步骤:(1)将被开方数尽可能分解成几个平方数。(2)应用=(a)(3)将平方项应用=a(a)现在,我们利用这个步骤来看一下例3的内容吧。

4、课本例3。例3中,我们看到了有系数的二次根式,而且可以知道,这样的二次根式化简的时候,系数和系数相乘,积为最终结果的系数。二次根式的除法我们通过实例的探究总结出了二次根式的乘法法则,那么这节课呢,我们采用同样的方法来总结除法法则。大家根据课本P8的探究内容,来总结一下二次根式的除法法则吧。课本P6探究内容。从刚刚的结果中,我们大家能用字母表示你所发现的规律吗?(学生讨论回答)将字母表示规律,就得到二次根式的除法法则:一般地,对二次根式的除法规定为=(a0,b0)从我们总结出来的规律,以及二次根式和分母的条件,我们可以知道,在除法中,必须要有的条件。在这里,如果没有特殊要求,我们的被开方数都是正

5、数。现在,我们来练习一下利用除法法则计算吧。课本例4。例4只是简单的利用公式进行计算,大家想一想,根据等式的定义,把式子反过来同样成立。=(a0,b0)根据这个式子,我们可以利用它对二次根式进行化简。这些例题中,我们能够发现,在我们所得到的结果中,都需要满足这样的要求。(1)分母中不含有二次根式,并且二次根式中不含分母;(2)最后结果中的二次根式要求写成最简的二次根式的形式。那么现在又有一个问题,究竟什么的根式属于最简二次根式呢?结合刚刚的例题,大家能总结出来吗?最简二次根式:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式。课件展示练习题,学生快速回答。根据这个最简二次根式,

6、大家来计算一下例6吧。课本例6。从例6中,我们可以发现,如果在最初的化简之后,得不到最简二次根式,那么我们就需要想办法去满足。这个在做题的过程中,需要大家慢慢体会。【典例精讲】1. 若等式= 成立,化简:|2x-4|+ 。解:根据题意得:2x-1=2-x,解得:x=1,则原式=|-2|+ + =2+4+1=7。2. 求比(+)6大的最小整数。解:设+=x,-=y,x+y=2,xy=1,又:x2+y2=(x+y)2-2xy=(2)2-21=22,x3+y3=(x+y)(x2-xy+y2)=422,(+)6+(-)6=x6+y6=(x3+y3)2-2x3y3=10582,又0-1,从而0(-) 6

7、1,故10581(-) 610582,比(+)6大的最小整数为10582。(三)重难点精讲最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等(四)归纳小结1.二次根式的性质2.代数式(五)随堂检测1、若+与互为倒数,则()A. a=b-1 B. a=b+1 C. a+b=1 D. a+b=-12、把二次根式a化为最简二次根式是()A. B. - C. - D. 3、已知:m=,a=,b=,则m的值是 ( )A大于1 B小于1C等于1 D无法确定4、已知|x-2|+ +z2-6z+9=0,求的值。5、已知x为奇数,且 = ,求 +的值。六、板书设计16.2二次根式的乘除概念 例题 练习七、作业布置1.家庭作业:完成本节课的同步练习;2.预习作业:完成导学案16.3二次根式的加减探究案八、教学反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服