ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:165KB ,
资源ID:7619099      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7619099.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(江苏省丹阳市八中九年级数学《一元二次方程及其解法(直开法)》教案 人教新课标版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省丹阳市八中九年级数学《一元二次方程及其解法(直开法)》教案 人教新课标版.doc

1、江苏省丹阳市八中九年级数学《一元二次方程及其解法(直开法)》教案 人教新课标版 一、教学目标:1、知识目标:经历由实际问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界的有效数学模型。 2、能力目标:了解一元二次方程的概念和它的一般形式ax2+bx+c= 0(a≠0),正确理解和掌握一般形式中的a≠0,“项”和“系数”等概念;会根据实际问题列一元二次方程;会用直接开平方法法解一元二次方程。 3、情感目标:体会转化的思想方法。 二、教学重点:正确理解和掌握一般形式中的a≠0,“项”和“系数”等概念;会用直接开平方法法解一元二次方程。 三、教学难点:理解直接开平方法与平方根的定义

2、的关系,会用直接开平方法解一元二次方程。 四、教学类型:新授。 五、教学过程: 一、 做一做: 1.问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少? 分析:设长方形绿地的宽为x米,不难列出方程 x(x+10)=900 整理可得 x2+10x-900=0.  (1) 2.问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率. 解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册;同样,

3、明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)(1+x)=5(1+x)2万册.可列得方程 5(1+x)2=7.2, 整理可得 5x2+10x-2.2=0.   (2) 3.思考、讨论 这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?( 学生分组讨论,然后各组交流 ) 共同特点:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2 二、 一元二次方程的概念 上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的

4、方程叫做一元二次方程).通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0)。 其中叫做二次项,叫做二次项系数;叫做一次,叫做一次项系数,叫做常数项。. 三、 例题讲解与练习巩固 1.例1:下列方程中哪些是一元二次方程?试说明理由。 (1) (2) (3) (4) 2.例2:将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项: 1) 2)(x-2)(x+3)=8 3) 说明:一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。此外要使学生意识到:二次

5、项、二次项系数、一次项、一次项系数、常数项都是包括符号的。 3.例3: 方程(2a—4)x2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程? 本题先由同学讨论,再由教师归纳。 4.例4:已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。 分析:一根为2即x=2,只需把x=2代入原方程 5.练习: 1、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项 2x(x-1)=3(x-5)-4 2、关于的方程,在什么条件下是一元二次方程?在什么条件下是一元一次方程? 四、思

6、考:如何解方程呢? 分析:由平方根的定义可知即此一元二次方程两个根为。我们把这种解一元二次方程的方法叫直接开平方法。 说明:形如方程可变形为 的形式,即方程左边是关于x的一次式的平方,右边是一个非负常数,可用直接开平方法解此方程。方程的两根分别用表示。 五、例题讲解: 例5、解下列方程 : (1) (2) 分析:用直接开平方法求解 变式1:解方程 例6:解下列方程 (1)(x+1)2-4=0; (2)12(2-x)2-9=0. 说明:(1)中只要把看作一个整体,就可以转化为(≥0)型的方法去解决,这里体现了整体思想。 思考:形如的

7、方程的解法。 练习:练习一 解下列方程: (1)x2=169;   (2)45-x2=0; (3)12y2-25=0; (4)4x2+16=0 练习二 解下列方程: (1)(x+2)2-16=0 (2)(x-1)2-18=0; (3)(1-3x)2=1; (4)(2x+3)2-25=0 拓展: (1) (2) 练习:(1) (2) 本课小结: 1、只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。 2、一元二次方程的一般形式为(≠0),一元二次方程的项及系数都是

8、根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。 3、在实际问题转化为数学模型( 一元二次方程 )的过程中,体会学习一元二次方程的必要性和重要性。 4、对于形如(a≠0,a≥0)的方程,只要把看作一个整体,就可转化为(n≥0)的形式用直接开平方法解。 5、当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解。 第1课时 一元二次方程及其解法(直接开平方法)学案 一、 做一做: 1.问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少? 2.问题2 学校

9、图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率. 3.思考、讨论: 这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢? 共同特点:(1)__________________________; (2)__________________________; (3)__________________________。 二、 一元二次方程的概念: 上述两个整式方程中都只含有____________,并且未知数的____________,这样的方程叫

10、做一元二次方程。通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0)。 其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项。. 三、 例题讲解与练习巩固 1.例1:下列方程中哪些是一元二次方程?试说明理由。 (1) (2) (3) (4) 2.例2:将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项: 1) 2)(x-2)(x+3)=8 3) 3.例3: 方程(2a—4)x2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程? 4.例4

11、已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。 5.练习: 1、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项 2x(x-1)=3(x-5)-4 2、关于的方程,在什么条件下是一元二次方程?在什么条件下是一元一次方程? 四、思考:如何解方程呢? 五、例题讲解: 例5、解下列方程 : (1) (2) 变式1:解方程 例6:解下列方程 (1)(x+1)2-4=0; (2)12(2-x)2-9=0.

12、 思考:形如的方程的解法。 练习:练习一 解下列方程: (1)x2=169;    (2)45-x2=0; (3)12y2-25=0; (4)4x2+16=0 练习二 解下列方程: (1)(x+2)2-16=0 (2)(x-1)2-18=0; (3)(1-3x)2=1; (4)(2x+3)2-25=0 拓展: (1) (2) 练习:(1) (2)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服