ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:213KB ,
资源ID:7618853      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7618853.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册 第一章 直角三角形的边角关系 1.1《锐角三角函数(2)》教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 第一章 直角三角形的边角关系 1.1《锐角三角函数(2)》教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc

1、锐角三角函数(2)教学目标 (一)教学知识点 1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义. 2.能够运用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形中的边角关系,进行简单的计算. 4.理解锐角三角函数的意义. (二)能力训练要求 1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力. (三)情感与价值观要求 1.积极参与数学活动,对数学产生好奇心和求知欲. 2.形成合作交流的意识以及独立思考的习惯教学重点 1.理解锐角三角函数正弦、余弦的意义,并能举例说明. 2.

2、能用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形的边角关系,进行简单的计算.教学难点 用函数的观点理解正弦、余弦和正切.教学方法 探索交流法.教具准备 多媒体演示.教学过程 .创设情境,提出问题,引入新课 我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切. 现在我们提出两个问题: 当直角三角形中的锐角确定之后,其他边之间的比也确定吗? 梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系? .讲

3、授新课 1.正弦、余弦及三角函数的定义 多媒体演示如下内容:想一想:如图(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?(2) 有什么关系? 呢?(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答. A1C1BC1,A2C2BC2,A1C1/A2C2.RtBA1C1RtBA2C2. (相似三角形对应边成比例). 由于A2是梯子A1B上的任意点,所以,如果改变A2在梯子A1B上的位置,上述结论仍成立. 由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角的邻边与斜

4、边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大小无关. 如果改变梯子A1B的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比值,邻边与斜边的比值随之改变. 我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢? 函数关系. 很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示) 在RtABC中,如果锐角A确定,那么A的对边与斜边的比、邻边与斜边的比也随之确定.如图,A的对边与邻边的比叫做A的正弦(s

5、ine),记作sinA,即 sinA A的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即 cosA= 锐角A的正弦、余弦和正切都是A的三角函数(trigonometricfunction). 你能用自己的语言解释一下你是如何理解“sinA、cosA、tanA都是之A的三角函数”呢? 我们在前面已讨论过,当直角三角形中的锐角A确定时.A的对边与斜边的比值,A的邻边与斜边的比值,A的对边与邻边的比值也都唯一确定.在“A的三角函数”概念中,A是自变量,其取值范围是0A90;三个比值是因变量.当A变化时,三个比值也分别有唯一确定的值与之对应. 2.梯子的倾斜程度与sinA和cosA的关系

6、 我们上一节知道了梯子的倾斜程度与tanA有关系:tanA的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA、cosA有关系呢?如果有关系,是怎样的关系?19如图所示,ABA1B1,在RtABC中,sinA=,在RtA1B1C中,sinA1=. , 即sinAcosA1, 所以梯子的倾斜程度与cosA也有关系.cosA的值越小,梯子越陡. 同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切. 3.例题讲解 多媒体演示.如图,在RtABC中,B=90,AC200.sinA0.6,求BC的长. 分析:sinA不是“sin”与

7、“A”的乘积,sinA表示A所在直角三角形它的对边与斜边的比值,已知sinA0.6,0.6. 解:在RtABC中,B90,AC200. sinA0.6,即=0.6,BCAC0.62000.6=120. 思考:(1)cosA? (2)sinC? cosC? (3)由上面计算,你能猜想出什么结论? 解:根据勾股定理,得 AB=160. 在RtABC中,CB90. cosA0.8, sinC= =0.8, cosC 0.6, 由上面的计算可知 sinAcosCO.6, cosAsinC0.8. 因为A+C90,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”.做一做:

8、如图,在RtABC中,C=90,cosA,AC10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90-A)cosA,cos(90-A)=sinA. 解:在RtABC中,C90,AC=10,cosA,cosA,AB=,sinB根据勾股定理,得BC2AB2-AC2()2-102=BC.cosB,3.(2003年陕西)(补充练习)在ABC中.C=90,若tanA=,则sinA= . 解:如图,tanA=.设BC=x,AC=2x,根据勾股定理,得AB=.sinA=.课时小结本节课我们类比正切得出

9、了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A的三角函数概念中,A是自变量,其取值范围是0A90;三个比值是因变量.当A确定时,三个比值分别唯一确定;当A变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题. .课后作业 习题1、2第1、2、3、4题 .活动与探究已知:如图,CD是RtABC的斜边AB上的高,求证:BC2ABBD.(用正弦、余弦函数的定义证明) 根据正弦和余弦的定义,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一个直角三角形中,在RtABC中,CDAB.所以图中含有三个直角三角形.例如B既在RtBDC中,又在RtABC中,涉及线段BC、BD、AB,由正弦、余弦的定义得cosB,cosB= . 在RtABC中,cosB 又CDAB. 在RtCDB中,cosB=BC2ABBD.板书设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服