ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:771KB ,
资源ID:7618106      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7618106.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

1、25.1随机事件与概率25.1.1随机事件教学目标1.知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断.2.过程与方法:进行实验操作、观察、思考和总结,归纳出三种事件各自的本质属性,并抽象成数学概念.3.情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象.教学重难点重点:随机事件的特点难点:对生活中的随机事件作出准确判断教学过程一、教师导学1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100;(3)三个人性别各不相同;(4)一元二

2、次方程x2+2x+3=0无实数解.2.引发思考我们把上面的事件(1)、(4)称为必然事件,把事件(2)、(3)称为不可能事件,那么请问:什么是必然事件?什么是不可能事件?它们的特点各是什么?二、合作与探究活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的

3、事件吗?根据学生回答的具体情况,教师适当地进行点拨和引导.活动2:小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?提出问题,探索概念(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、巩固练习练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘

4、翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上的一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)地球上物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.答案:必然事件:(1)(5)(8)不可能事件:(7)随机事件:(2)(3)(4)(6)(9)四、总结提升(由学生总结教师补充)25.1.2概率教学目标1.理解P(A)=(在一次试验中有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果)的意义.2.应用P(A)=解决一些实际问题.复习概率的意

5、义,为解决利用一般方法求概率的繁琐,探究用特殊方法求概率,然后应用这种方法解决一些实际问题.教学重难点1.重点:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,以及运用它解决实际问题.2.难点:通过实验理解P(A)=并应用它解决一些具体题目.教学过程一、教师导学(老师问,学生口答)请同学们回答下列问题.1.概率是什么?2.P(A)的取值范围是什么?3.在大量重复试验中,什么值会稳定在一个常数上?我们又把这个常数叫做什么?4.A是必然事件,B是不可能发生的事件,C是随机事件.请你画出数轴把这三个量表示出来.老师点

6、评:1.(口述)一般地,在大量重复试验中,如果事件A发生的频率会稳定在某一个常数附近,那么这个常数就叫做事件A的概率,记为P(A).2.(板书)0P(A)1.3.(口述)频率、概率.二、合作与探究利用P(A)=解决一些具体题目,它具有普遍性.把学生分为10组,按要求做试验并回答问题.1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的签上的号码有多少种可能?其抽到1的概率为多少?2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?老师点评:1.可能结果有1,2,3,4,5这5种情况,由于纸签的形状、大小相同,又是随机抽取的,所以我们可以认为:每个号被抽

7、到的可能性相等,都是 .其概率是.2.有1,2,3,4,5,6这6种可能.由于骰子的构造相同、质地均匀,又是随机掷出的,所以我们可以断言:每种结果的可能性相等,都是.以上两个试验有两个共同的特点:1.一次试验中,可能出现的结果有限多个;2.一次试验中,各种结果发生的可能性相等.对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=.【例】如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色(3)指针不指向红色.分析:转一次转盘,它的可能结果有4种有限个,并且各种结果发生的可能性相等.因此,它可以应用P(A)=来解决问题.解:(1)P(指针指向绿色)=;(2)P(指针指向红色或黄色)=;(3)P(指针不指向红色)=.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服