ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:179.50KB ,
资源ID:7617394      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7617394.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学下册 1.2 勾股定理及其逆定理(第1课时)教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册 1.2 勾股定理及其逆定理(第1课时)教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc

1、直角三角形第1课时勾股定理及其逆定理1复习直角三角形的相关知识,归纳并掌握直角三角形的性质和判定;2学习并掌握勾股定理及其逆定理,能够运用其解决问题(重点,难点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后按如图所示的方法用桩钉钉成一个三角形,他们认为其中一个角便是直角你知道这是什么道理吗?二、合作探究探究点一:直角三角形的性质与判定【类型一】 判定三角形是否为直角三角形 具备下列条件的ABC中,不是直角三角形的是()AABCBABCCABC123DAB3C解析:由直角三角形内角和为180求得三角形的每一个角的度数,再判断其形状A中ABC,即2C180,C9

2、0,为直角三角形,同理,B,C中均为直角三角形,D选项中AB3C,即7C180,三个角没有90角,故不是直角三角形故选D.方法总结:在判定一个三角形是否为直角三角形时要注意直角三角形中有一个内角为90.变式训练:见学练优本课时练习“课堂达标训练”第1题【类型二】 直角三角形的性质的应用 如图,ABC中,ADBC于D,CEAB于E.(1)猜测1与2的关系,并说明理由(2)如果A是钝角,如图,(1)中的结论是否还成立?解析:(1)根据垂直的定义可得ABD和BCE都是直角三角形,再根据直角三角形两锐角互余可得1B90,2B90,从而得解;(2)根据垂直的定义可得DE90,然后求出1490,2390,

3、再根据3、4是对顶角解答即可解:(1)12.ADBC,CEAB,ABD和BCE都是直角三角形,1B90,2B90,12;(2)结论仍然成立理由如下:BDAC,CEAB,DE90,1490,2390,34(对顶角相等),12.方法总结:本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余,同角或等角的余角相等的性质,熟记性质是解题的关键变式训练:见学练优本课时练习“课堂达标训练”第2题探究点二:勾股定理【类型一】 直接运用勾股定理 已知:如图,在ABC中,ACB90,AB13cm,BC5cm,CDAB于D.求:(1)AC的长;(2)SABC;(3)CD的长解析:(1)由于在ABC中,ACB

4、90,AB13cm,BC5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出SABC;(3)根据CDABBCAC即可求出CD.解:(1)在ABC中,ACB90,AB13cm,BC5cm,AC12cm;(2)SABCCBAC30cm2;(3)SABCACBCCDAB,CDcm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可变式训练:见学练优本课时练习“课堂达标训练”第5题【类型二】 分类讨论思想在勾股定理中的应用 在ABC中,AB15,AC13,BC边上的高AD12,试求AB

5、C周长解析:本题应分两种情况进行讨论:(1)当ABC为锐角三角形时,在RtABD和RtACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将ABC的周长求出;(2)当ABC为钝角三角形时,在RtABD和RtACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将ABC的周长求出解:此题应分两种情况进行讨论:(1)当ABC为锐角三角形时,在RtABD中,BD9,在RtACD中,CD5,BCBDCD5914,ABC的周长为15131442;(2)当ABC为钝角三角形时,在RtABD中,BD9.在RtACD中,CD5,BC954,ABC的周长为1513432

6、.当ABC为锐角三角形时,ABC的周长为42;当ABC为钝角三角形时,ABC的周长为32.方法总结:在题目未给出具体图形时,应考虑三角形是锐角三角形还是钝角三角形,凡符合题设的情况都要考虑,体现了分类讨论思想,这是解无图几何问题的常用方法变式训练:见学练优本课时练习“课后巩固提升”第6题探究点三:勾股定理的逆定理【类型一】 判断三角形的形状 如图,正方形网格中有ABC,若小方格边长为1,则ABC的形状为()A直角三角形B锐角三角形C钝角三角形D以上答案都不对解析:正方形小方格边长为1,BC2,AC,AB.在ABC中,BC2AC2521365,AB265,BC2AC2AB2,ABC是直角三角形故

7、选A.方法总结:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是【类型二】 利用勾股定理的逆定理证明垂直关系 如图,在正方形ABCD中,AEEB,AFAD,求证:CEEF.证明:连接CF,设正方形的边长为4.四边形ABCD为正方形,ABBCCDDA4.点E为AB中点,AFAD,AEBE2,AF1,DF3.由勾股定理得EF212225,EC2224220,FC2423225.EF2EC2FC2,CFE是直角三角形,FEC90,即EFCE.方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三

8、角形,所以此定理也是判定垂直关系的一个主要方法【类型三】 运用勾股定理的逆定理解决面积问题 如图,在四边形ABCD中,B90,AB8,BC6,CD24,AD26,求四边形ABCD的面积解析:连接AC,根据已知条件运用勾股定理的逆定理可证ACD为直角三角形,然后代入三角形面积公式将ABC和ACD这两个直角三角形的面积求出,两者面积相加即为四边形ABCD的面积解:连接AC,B90,ABC为直角三角形AC2AB2BC28262102,AC10.在ACD中,AC2CD2100576676,AD2262676,AC2CD2AD2,ACD为直角三角形,且ACD90,S四边形ABCDSABCSACD6810

9、24144.方法总结:此题将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用变式训练:见学练优本课时练习“课后巩固提升”第8题探究点四:互逆命题与互逆定理 写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题(1)两直线平行,同旁内角互补;(2)垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60的三角形是等边三角形解析:分别找出各命题的题设和结论将其互换即可解:(1)同旁内角互补,两直线平行真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内)真命题;(3)内错角相等假命题;(4)等边三角形有一个角是60.真命题方法总结:一个定理不一定有逆定理,只有当它的逆命题为真命题时,它才有逆定理变式训练:见学练优本课时练习“课后巩固提升”第7题三、板书设计1直角三角形的性质与判定直角三角的两个锐角互余;有两个角互余的三角形是直角三角形2勾股定理及勾股定理的逆定理直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形本节课充分发挥了学生动手操作能力、分类讨论能力、交流能力和空间想象能力,让学生充分体验到了数学思考的魅力和知识创新的乐趣,突显教学过程中的师生互动,使学生真正成为主动学习者.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服