1、完全平方公式教学目标:完全平方公式的推导及其应用;完全平方公式的几何背景;体会公式中字母的广泛含义,它可以是数,也可以是整式教学重点:(1)完全平方公式的推导过程、结构特点、语言表述、几何解释;(2)完全平方公式的应用教学难点:完全平方公式的推导及其几何解释和公式结构特点及其应用教学过程:一、 激发学生兴趣,引出本节内容活动1 探究,计算下列各式,你能发现什么规律?(1)(p1)2 =(p1)(p1)_;(2)(m2)2=(m2)(m2)_;(3)(p1)2 =(p1)(p1)_;(4)(m2)2=(m2)(m2)_ 答案:(1)p2+2p+1; (2)m2+4m+4; (3)p22p+1;
2、(4)m24m+4活动2 在上述活动中我们发现(ab)2,是否对任意的a、b,上述式子都成立呢?学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2(ab)2=(ab)(ab)=a(ab)b(ab)=a2abab+b2=a22ab+b2二、问题引申,总结归纳完全平方公式两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即(a + b)2=a2+2ab+b2,(ab)2=a22ab+b2在交流中让学生归纳完全平方公式的特
3、征:(1)左边为两个数的和或差的平方;(2)右边为两个数的平方和再加或减这两个数的积的2倍活动4 你能根据教材中的图8-8中的面积说明完全平方公式吗?三例题讲解,巩固新知例3:运用完全平方公式计算(1) (4m+ n)2 ; (2) (y1/2)2补充例题:运用完全平方公式计算(1)(x+2y)2;(2)(xy)2; (3) ( x + y )2(xy)2说明:(1)题可转化为(2yx)2或(x2y)2,再运用完全平方公式;(2)题可以转化为(x+y)2,利用和的完全平方公式;(3)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算例 4: 运用完全平方公式计算(1)1022; (2)992 思考:(a+b)2与(ab)2相等吗?为什么?(ab)2与(ba)2相等吗?为什么?(ab)2与a2b2相等吗?为什么?练习:课本69页 1 ;2 补充例题:(1) 如果x 2 + kxy + 9y2是一个完全平方式,求k的值(2) 已知x+y=8,xy=12,求x2 + y2 ; (x y )2的值(3) 已知a + 1/a = 3 ,求 a2 + 1/a2四、归纳小结、布置作业小结:完全平方公式作业:课本71 页 习题 2 ;