1、用一次函数解决问题教学目标:1、能利用一次函数及其图象解决简单的实际问题。2、通过解决实际问题,进一步发展学生的数学应用能力。3、培养学生学习兴趣,使他们能积极参与数学活动,更好地解决实际问题。教学重点:一次函数的应用。教学过程一、讲授新课例题1、某居民小区按照分期付款的形式福利售房,政府给予一定的贴息。小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4。1)若第x(x2)年小明家交付房款y元,求年付房款y(元)与x(年)的函数关系式;2)将第三、第十年应付房款填入下表中:年
2、份第一年第二年第三年第十年交房款(元)300005360例题2、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。(1) 求y与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?行李票费用(元)行李重量(公斤)x8060y106例题3、某
3、地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,其图象如图所示。求 (1)y与x之间的函数关系式 (2)旅客最多可免费携带行李的公斤数。例题4、扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5吨万元,用一节B型货厢的运费是0.8万元。 (1)设运输这批货物的总运费为y (万元),用A型货的节数为x (节),试写出y与x之间的函数关系式; (2) 已知甲种货物35吨和乙种货物15吨,可装满一节
4、A型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。 (3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?二、课堂练习 书:P159练习三、总结:能利用一次函数及其图象解决简单的实际问题。四、作业1、一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长cm写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是 ( )A、y = x + 12(0x15 B、y = x + 12(0x15C、y = x + 12(0x15) D、y = x + 12(0x1
5、52、如图公路上有A、B、C三站,一辆汽车在上午8时从离A站10千米的P地出发向C站匀速前进,15分钟后离A站20千米。(1) 设出发x小时后,汽车离A站y千米,写出y与x之间的函数关系式;BPAC(2) 当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站。汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高到多少?3、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克。获利润1200元。(1)、按要求安排A、B两种产品的生产件数,有哪几种方案?请你给设计出来;(2)、设生产A、B两种产品获总利润为y (元),其中一种的生产件数为x,试写出y与x之间的函数关系式,并利用函数的性质说明 (1)中哪种生产方案获总利润最大?最大利润是多少?板书设计:课 题:*例题讲解:例题1 例题2 *概念板书:* 学生练习课后笔记: