1、等腰三角形
教学目 标
知识与技能
1.探索等腰三角形判定定理.
2.理解等腰三角形的判定定理,并会运用其进行简单的证明.
3.了解反证法的基本证明思路,并能简单应用。
4.培养学生的逆向思维能力。
过程与方法
情感、态度与价值观
教学重 点
探索等腰三角形判定定理,并会运用其进行简单的证明。
教学难 点
反证法的基本证明思路,并能简单运用。
教学程 序
集体备课内容
个案补 充
第一环节:导入新课、明确目标
通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论
2、分别是什么?
问题2.我们是如何证明上述定理的?
问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?
第二环节:预习反馈、点拨质疑
预习反馈
第三环节:分组合作、探究解疑
上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?(如图,在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.)
3、你是如何想到的?
(由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形.)
同学们可在练习本上尝试一下是否如此,然后分组讨论.
可能发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的.后两种方法是可行的.
(教师可让两个同学在黑板上演示,并对推理证明过程讲评)
我们用“反过来”思考问题,获得并证明了一个非常重要的定理——等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.这一定理可
4、以简单叙述为:等角对等边.我们不仅发现了几何图形的对称美,也发现了数学语言的对称美.
第四环节:展示分享、点评升华
我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:
小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?
有学生提出:“我认为这个结论是成立的.因为我画了几个三角形,观察并测量发现,如果两个角不相等,它们所对的边也不相等.但要像证明“等角对等边”那样却很难证明,因为它的条件和结论都是否定的.”的确如此.像这种从正面人手
5、很难证明的结论,我们有没有别的证明思路和方法呢?
我们来看一位同学的想法:
如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.
假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC
你能理解他的推理过程吗?
再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但△AB∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不
6、可能有两个直角.
引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。
都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.
接着用“反过来”思考问题的方法获得并证明了等腰三角形的判定定理“等角对等边”,最后结合实例了解了反证法的含义.
第五环节:当堂检测、全面达标
1、随堂练习
2、拓展延伸:如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长. .
第六环节:课堂小结
(1)本节课学习了哪些内容?
(2)等腰三角形的判定方法有哪几种?
(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.
(4)举例谈谈用反证法说理的基本思路
第七环节:布置作业
A:1、2、3、4 B:1、2、3 C 1、3
教学反 思